National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
Environ Health Perspect. 2010 Feb;118(2):265-72. doi: 10.1289/ehp.0901107.
An in vitro steroidogenesis assay using the human adrenocortical carcinoma cell line H295R is being evaluated as a possible screening assay to detect and assess the impact of endocrine-active chemicals (EACs) capable of altering steroid biosynthesis. Data interpretation and their quantitative use in human and ecological risk assessments can be enhanced with mechanistic computational models to help define mechanisms of action and improve understanding of intracellular concentration-response behavior.
The goal of this study was to develop a mechanistic computational model of the metabolic network of adrenal steroidogenesis to estimate the synthesis and secretion of adrenal steroids in human H295R cells and their biochemical response to steroidogenesis-disrupting EAC.
We developed a deterministic model that describes the biosynthetic pathways for the conversion of cholesterol to adrenal steroids and the kinetics for enzyme inhibition by metryrapone (MET), a model EAC. Using a nonlinear parameter estimation method, the model was fitted to the measurements from an in vitro steroidogenesis assay using H295R cells.
Model-predicted steroid concentrations in cells and culture medium corresponded well to the time-course measurements from control and MET-exposed cells. A sensitivity analysis indicated the parameter uncertainties and identified transport and metabolic processes that most influenced the concentrations of primary adrenal steroids, aldosterone and cortisol.
Our study demonstrates the feasibility of using a computational model of steroidogenesis to estimate steroid concentrations in vitro. This capability could be useful to help define mechanisms of action for poorly characterized chemicals and mixtures in support of predictive hazard and risk assessments with EACs.
目前正在评估使用人肾上腺皮质癌细胞系 H295R 的体外类固醇生成测定法,作为一种可能的筛选测定法,以检测和评估能够改变类固醇生物合成的内分泌活性化学物质 (EAC) 的影响。通过使用有助于定义作用机制和提高对细胞内浓度反应行为的理解的机制计算模型,可以增强对数据的解释及其在人体和生态风险评估中的定量使用。
本研究的目的是开发肾上腺类固醇生成代谢网络的机制计算模型,以估计人 H295R 细胞中肾上腺类固醇的合成和分泌及其对类固醇生成破坏的 EAC 的生化反应。
我们开发了一个确定性模型,描述了胆固醇转化为肾上腺类固醇的生物合成途径,以及酶抑制米屈肼 (MET) 的动力学,MET 是一种模型 EAC。使用非线性参数估计方法,将模型拟合到使用 H295R 细胞进行的体外类固醇生成测定中的测量值。
模型预测的细胞和培养基中类固醇浓度与对照和 MET 暴露细胞的时间过程测量值吻合良好。敏感性分析表明参数不确定性,并确定了影响主要肾上腺类固醇、醛固酮和皮质醇浓度的运输和代谢过程。
我们的研究表明,使用类固醇生成的计算模型来估计体外类固醇浓度是可行的。这种能力可能有助于定义特征不明确的化学物质和混合物的作用机制,以支持 EAC 的预测性危害和风险评估。