Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Neoplasia. 2010 Feb;12(2):150-60. doi: 10.1593/neo.91500.
p53, can regulate cell apoptosis in both transcription-dependent and -independent manners. The transcription-independent pathway was demonstrated by the translocation of p53 to mitochondria. Our study showed that p53 mitochondrial translocation was found in mitomycin C (MMC)-treated HepG2. The p53 C-terminal domain is clustered with potential nuclear leading sequences and showed strong electrostatic ion-ion interactions with cardiolipin, phosphatidylglycerol and phosphatidic acid in vitro. Disruption of cardiolipin biosynthesis by phosphatidylglycero-phosphate synthase (PGS) or CDP-diacylglycerol synthase 2 (CDS-2) short hairpin RNA (shRNA) transfection eliminated the MMC-induced translocation of mitochondrial p53. The elimination of mitochondrial p53 translocation also reduced Bcl-xL and Bcl-2 mitochondrial distribution. In HEK 293T models with saturated p53 expression, the mitochondrial partition of p53, Bcl-xL, and Bcl-2 obviously decreased in their PGS shRNA- or CDS-2 shRNA-expressing stable clones. In p53-null H1299 models, both the mitochondrial partitions of Bcl-xL and Bcl-2 were strongly reduced in relation to the HEK 293T models. The Bcl-xL mitochondrial partition was elevated in H1299 models expressing pCEP4-p53wt suggesting the direct carrier role of p53 in transporting Bcl-xL to the mitochondria. We also found that the cytosolic pool of Bcl-xL and Bcl-2 remained unaffected in the low-dose MMC treatment but decreased in the high-dose MMC treatment. The cytosolic pool of Bcl-2 and Bcl-xL directly regulated their amounts in p53-dependent mitochondrial distribution. In the low-dose MMC treatment, the increased mitochondrial p53, Bcl-xL, and Bcl-2 could attenuate apoptosis. However, in the high-dose MMC treatment, only the p53 translocated to the mitochondria and resulted in apoptosis progression. On the basis of this study, we thought mitochondrial p53 might regulate apoptosis in a biphasic manner.
p53 可以通过转录依赖和非依赖两种方式调节细胞凋亡。非依赖转录的途径是通过 p53 向线粒体的易位来证明的。我们的研究表明,在丝裂霉素 C(MMC)处理的 HepG2 中发现了 p53 线粒体易位。p53 C 端结构域与潜在的核前导序列聚集在一起,并在体外与心磷脂、磷脂酰甘油和磷脂酸表现出强烈的静电离子-离子相互作用。用磷酸甘油磷酸合酶(PGS)或 CDP-二酰基甘油合酶 2(CDS-2)短发夹 RNA(shRNA)转染破坏心磷脂生物合成,消除了 MMC 诱导的线粒体 p53 易位。消除线粒体 p53 易位也减少了 Bcl-xL 和 Bcl-2 的线粒体分布。在过表达 p53 的 HEK 293T 模型中,PGS shRNA 或 CDS-2 shRNA 表达稳定克隆中 p53、Bcl-xL 和 Bcl-2 的线粒体分配明显减少。在 p53 缺失的 H1299 模型中,与 HEK 293T 模型相比,Bcl-xL 和 Bcl-2 的线粒体分配都强烈减少。在表达 pCEP4-p53wt 的 H1299 模型中,Bcl-xL 的线粒体分配升高,表明 p53 在将 Bcl-xL 转运到线粒体中具有直接载体作用。我们还发现,低剂量 MMC 处理后细胞质 Bcl-xL 和 Bcl-2 的池未受影响,但高剂量 MMC 处理后减少。细胞质 Bcl-xL 和 Bcl-2 的池直接调节它们在 p53 依赖的线粒体分布中的含量。在低剂量 MMC 处理中,增加的线粒体 p53、Bcl-xL 和 Bcl-2 可以减轻细胞凋亡。然而,在高剂量 MMC 处理中,只有转移到线粒体的 p53 导致细胞凋亡进展。基于这项研究,我们认为线粒体 p53 可能以双相方式调节细胞凋亡。