Suppr超能文献

眼科用微型药泵。

Mini drug pump for ophthalmic use.

作者信息

Saati Saloomeh, Lo Ronalee, Li Po-Ying, Meng Ellis, Varma Rohit, Humayun Mark S

机构信息

Doheny Eye Institute, University of Southern California Keck School of Medicine, Los Angeles, California, USA.

出版信息

Trans Am Ophthalmol Soc. 2009 Dec;107:60-70.

Abstract

PURPOSE

To evaluate the feasibility of developing a novel mini drug pump for ophthalmic use.

METHODS

Using principles of microelectromechanical systems engineering, a mini drug pump was fabricated. The pumping mechanism is based on electrolysis, and the pump includes a drug refill port as well as a check valve to control drug delivery. Drug pumps were tested first on the benchtop and then after implantation in rabbits. For the latter, we implanted 4 elliptical (9.9 x 7.7 x 1.8 mm) non-electrically active pumps into 4 rabbits. The procedure is similar to implantation of a glaucoma seton. To determine the ability to refill and also the patency of the cannula, at intervals of 4 to 6 weeks after implantation, we accessed the drug reservoir with a transconjunctival needle and delivered approximately as low as 1 microL of trypan blue solution (0.06%) into the anterior chamber. Animals were followed up by slit-lamp examination, photography, and fluorescein angiography.

RESULTS

Benchtop testing showed 2.0 microL/min delivery when using 0.4 mW of power for electrolysis. One-way valves showed reliable opening pressures of 470 mm Hg. All implanted devices refilled at 4- to 6-week intervals for 4 to 6 months. No infection was seen. No devices extruded. No filtering bleb formed over the implant.

CONCLUSIONS

A prototype ocular mini drug pump was built, implanted, and refilled. Such a platform needs more testing to determine the long-term biocompatibility of an electrically controlled implanted pump. Testing with various pharmacologic agents is needed to determine its ultimate potential for ophthalmic use.

摘要

目的

评估开发一种新型眼科用微型药物泵的可行性。

方法

利用微机电系统工程原理制造了一种微型药物泵。其泵送机制基于电解,该泵包括一个药物补充端口以及一个控制药物输送的止回阀。首先在实验台上对药物泵进行测试,然后将其植入兔子体内后进行测试。对于后者,我们将4个椭圆形(9.9×7.7×1.8毫米)非电活性泵植入4只兔子体内。该操作过程类似于青光眼引流管的植入。为了确定补充药物的能力以及套管的通畅性,在植入后每隔4至6周,我们用经结膜针进入药物储存器,并向前房输送低至约1微升的台盼蓝溶液(0.06%)。通过裂隙灯检查、摄影和荧光素血管造影对动物进行随访。

结果

实验台测试表明,电解时使用0.4毫瓦的功率可实现2.0微升/分钟的输送量。单向阀显示可靠的开启压力为470毫米汞柱。所有植入装置在4至6个月内每隔4至6周进行一次药物补充。未观察到感染情况。没有装置挤出。植入物上方未形成滤过泡。

结论

构建、植入并补充了一种眼部微型药物泵原型。这样一个平台需要更多测试来确定电控植入泵的长期生物相容性。需要用各种药物制剂进行测试以确定其在眼科应用中的最终潜力。

相似文献

1
Mini drug pump for ophthalmic use.
Trans Am Ophthalmol Soc. 2009 Dec;107:60-70.
2
Mini drug pump for ophthalmic use.
Curr Eye Res. 2010 Mar;35(3):192-201. doi: 10.3109/02713680903521936.
3
A passive MEMS drug delivery pump for treatment of ocular diseases.
Biomed Microdevices. 2009 Oct;11(5):959-70. doi: 10.1007/s10544-009-9313-9. Epub 2009 Apr 25.
4
Subcutaneous abdominal artificial tears pump-reservoir for severe dry eye.
Orbit. 2003 Mar;22(1):29-40. doi: 10.1076/orbi.22.1.29.14012.
5
In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery.
J Control Release. 2016 Mar 28;226:47-56. doi: 10.1016/j.jconrel.2016.02.012. Epub 2016 Feb 6.
6
Mechanical pump dacryoreservoirs.
Dev Ophthalmol. 2008;41:269-282. doi: 10.1159/000131095.
7
Bactericidal effect of trypan blue and fluorescein sodium in ophthalmic practice.
Nepal J Ophthalmol. 2012 Jan-Jun;4(1):80-3. doi: 10.3126/nepjoph.v4i1.5856.
8
Experimental study of an automated system for the delivery of eyedrops using a microinfusion pump.
Am J Ophthalmol. 2005 Mar;139(3):547-9. doi: 10.1016/j.ajo.2004.08.051.
9
A novel dialysing seton: short-term biocompatibility.
Aust N Z J Ophthalmol. 1991 Feb;19(1):37-42. doi: 10.1111/j.1442-9071.1991.tb00319.x.
10
Clinico-histopathologic correlation of a successful glaucoma pump-shunt implant.
Ophthalmology. 1988 Sep;95(9):1189-94. doi: 10.1016/s0161-6420(88)33028-9.

引用本文的文献

1
Microfluidics - The State-of-the-Art Technology for Pharmaceutical Application.
Adv Pharm Bull. 2022 Aug;12(4):700-711. doi: 10.34172/apb.2022.073. Epub 2021 Sep 29.
2
Nanomedicine and drug delivery to the retina: current status and implications for gene therapy.
Naunyn Schmiedebergs Arch Pharmacol. 2022 Dec;395(12):1477-1507. doi: 10.1007/s00210-022-02287-3. Epub 2022 Sep 15.
3
Self-Sustainable Biomedical Devices Powered by RF Energy: A Review.
Sensors (Basel). 2022 Aug 24;22(17):6371. doi: 10.3390/s22176371.
5
Promising therapeutic drug delivery systems for glaucoma: a comprehensive review.
Ther Adv Ophthalmol. 2020 Mar 13;12:2515841420905740. doi: 10.1177/2515841420905740. eCollection 2020 Jan-Dec.
6
Promising Approach in the Treatment of Glaucoma Using Nanotechnology and Nanomedicine-Based Systems.
Molecules. 2019 Oct 22;24(20):3805. doi: 10.3390/molecules24203805.
8
Intravitreal infusion: A novel approach for intraocular drug delivery.
Sci Rep. 2016 Nov 25;6:37676. doi: 10.1038/srep37676.
10
Implantable MicroPump for Drug Delivery in Patients with Diabetic Macular Edema.
Transl Vis Sci Technol. 2014 Dec 1;3(6):5. doi: 10.1167/tvst.3.6.5. eCollection 2014 Oct.

本文引用的文献

2
A refillable microfabricated drug delivery device for treatment of ocular diseases.
Lab Chip. 2008 Jul;8(7):1027-30. doi: 10.1039/b804690e. Epub 2008 May 29.
3
Food and Drug Administration approval process for ophthalmic drugs in the US.
Curr Opin Ophthalmol. 2008 May;19(3):190-4. doi: 10.1097/ICU.0b013e3282f97fa1.
5
Vascular endothelial growth factor: biology and therapeutic applications.
Int J Biochem Cell Biol. 2007;39(7-8):1349-57. doi: 10.1016/j.biocel.2007.04.010. Epub 2007 Apr 22.
6
Drug delivery methods for posterior segment disease.
Curr Opin Ophthalmol. 2007 May;18(3):235-9. doi: 10.1097/ICU.0b013e3281108000.
7
In vivo models of proliferative vitreoretinopathy.
Nat Protoc. 2007;2(1):67-77. doi: 10.1038/nprot.2007.4.
10
Minimizing the risk of endophthalmitis following intravitreal injections.
Compr Ophthalmol Update. 2006 Nov-Dec;7(6):277-84; discussion 285-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验