Department of Computer Science, Stanford University, Stanford, California, United States of America.
PLoS One. 2010 Feb 1;5(2):e8906. doi: 10.1371/journal.pone.0008906.
Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.
生物模型的稳健性已成为系统生物学中的一个重要原则。许多过去对布尔模型的分析都同时(即同步)更新所有待处理的信号变化,从而无法考虑到由于噪声和不同环境条件导致的时间变化的稳健性。我们通过构建布尔模型并使用模型检查软件对其速度独立性属性进行分析,检查了以前发表的芽殖酵母和裂殖酵母细胞周期的数学模型对时间变化的稳健性。令人惊讶的是,这些模型几乎(但不完全)是速度独立的。在某些情况下,对分析中发现的时间问题的检查暴露了模型的明显不准确之处。对模型进行生物学上合理的修正消除了时间问题。此外,对速度独立布尔模型的调控相互作用中的随机突变进行的计算机模拟表明,即使在其他方面功能正常的模型中,也不太可能保持速度独立性,为维持时间稳健性的选择压力提供了证据。多个细胞周期模型表现出很强的时间变化稳健性,这显然是由于进化压力所致。因此,时间稳健性可以作为产生可测试假设的基础,并可以将注意力集中在模型中可能需要改进的方面。