Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
Int J Mol Med. 2010 Mar;25(3):445-58. doi: 10.3892/ijmm_00000364.
Abnormal glucose handling has emerged as a major clinical problem in millions of diabetic patients worldwide. Insulin resistance affects especially one of the main target organs of this hormone, the skeletal musculature, making impaired glucose metabolism in contractile fibres a major feature of type 2 diabetes. High levels of circulating free fatty acids, an increased intramyocellular lipid content, impaired insulin-mediated glucose uptake, diminished mitochondrial functioning and an overall weakened metabolic flexibility are pathobiochemical hallmarks of diabetic skeletal muscles. In order to increase our cellular understanding of the molecular mechanisms that underlie this complex diabetes-associated skeletal muscle pathology, we initiated herein a mass spectrometry-based proteomic analysis of skeletal muscle preparations from the non-obese Goto-Kakizaki rat model of type 2 diabetes. Following staining of high-resolution two-dimensional gels with colloidal Coomassie Blue, 929 protein spots were detected, whereby 21 proteins showed a moderate differential expression pattern. Decreased proteins included carbonic anhydrase, 3-hydroxyisobutyrate dehydrogenase and enolase. Increased proteins were identified as monoglyceride lipase, adenylate kinase, Cu/Zn superoxide dismutase, phosphoglucomutase, aldolase, isocitrate dehydrogenase, cytochrome c oxidase, small heat shock Hsp27/B1, actin and 3-mercaptopyruvate sulfurtransferase. These proteomic findings suggest that the diabetic phenotype is associated with a generally perturbed protein expression pattern, affecting especially glucose, fatty acid, nucleotide and amino acid metabolism, as well as the contractile apparatus, the cellular stress response, the anti-oxidant defense system and detoxification mechanisms. The altered expression levels of distinct skeletal muscle proteins, as documented in this study, might be helpful for the future establishment of a comprehensive biomarker signature of type 2 diabetes. Reliable markers could be used for improving diagnostics, monitoring of disease progression and therapeutic evaluations.
异常的葡萄糖处理已成为全球数百万糖尿病患者的主要临床问题。胰岛素抵抗尤其影响这种激素的主要靶器官之一,即骨骼肌,使收缩纤维中的葡萄糖代谢受损成为 2 型糖尿病的主要特征。循环游离脂肪酸水平升高、细胞内脂质含量增加、胰岛素介导的葡萄糖摄取减少、线粒体功能受损以及整体代谢灵活性降低是糖尿病骨骼肌的病理生物化学特征。为了提高我们对导致这种复杂糖尿病相关骨骼肌病变的分子机制的细胞理解,我们在此启动了基于质谱的非肥胖 Goto-Kakizaki 2 型糖尿病大鼠模型骨骼肌制剂的蛋白质组学分析。在用胶体考马斯亮蓝染色高分辨率二维凝胶后,检测到 929 个蛋白斑点,其中 21 个蛋白表现出中等差异表达模式。减少的蛋白包括碳酸酐酶、3-羟丁酸脱氢酶和烯醇酶。增加的蛋白被鉴定为单甘油酯脂肪酶、腺苷酸激酶、Cu/Zn 超氧化物歧化酶、磷酸葡萄糖变位酶、醛缩酶、异柠檬酸脱氢酶、细胞色素 c 氧化酶、小热休克 Hsp27/B1、肌动蛋白和 3-巯基丙酮酸硫转移酶。这些蛋白质组学发现表明,糖尿病表型与普遍失调的蛋白质表达模式有关,特别是影响葡萄糖、脂肪酸、核苷酸和氨基酸代谢,以及收缩装置、细胞应激反应、抗氧化防御系统和解毒机制。本研究记录的不同骨骼肌蛋白的改变表达水平可能有助于未来建立 2 型糖尿病的综合生物标志物特征。可靠的标志物可用于改善诊断、监测疾病进展和治疗评估。