Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Inorg Chem. 2010 Mar 1;49(5):2057-67. doi: 10.1021/ic9016504.
We have reported here, for the first time, the parallel and perpendicular orientation preferences of two planar and unhindered imidazoles as axial ligands (L) while coordinated toward iron(III) and iron(II) porphyrins, respectively, in a nonplanar porphyrinic environment. The synthesis and characterization of low-spin Fe(III)(tn-OEP)(L)(2) x ClO(4) and Fe(II)(tn-OEP)(L)(2) are reported. Fe(III)(tn-OEP)(L)(2) x ClO(4) shows rhombic electron paramagnetic resonance (EPR) spectra (at 77 K) in both solid and solution phases that are very characteristic for low-spin (S = 1/2) iron porphyrins with two axial imidazole ligands aligned parallel to each other. Single-point energy calculation is also performed on Fe(III)(tn-OEP)(1-MeIm)(2)(+) using density functional theory (DFT), which shows that the relative parallel orientations of two 1-MeIm are more stable than the perpendicular orientations. X-ray structures of Fe(II)(tn-OEP)(1-MeIm)(2) and Fe(II)(tn-OEP)(1-MeIm)(2).THF are reported that demonstrate, for the first time, the near-perpendicular axial ligand orientation (80.9 and 89.8 degrees, respectively) for iron(II) porphyrins in a distorted macrocyclic environment. Even starting from parallel axial orientations of 1-MeIm, geometry optimization using DFT converged well to the perpendicular axial alignment with a 82.54 degree dihedral angle, which is in close agreement with experiment. This is in sharp contrast to all earlier reports, in which sterically crowded imidazole (such as 2-MeIm) or a nearly planar porphyrin core with a "picket fence" environment that restricts the rotation of the axial ligands is required for perpendicular orientation. Electrochemical data obtained from a cyclic voltammetric study for Fe(II)(tn-OEP)(L)(2) reveal one-electron oxidation at very high positive potential, which readily explains why the complexes are so stable in air. Bulk oxidation of Fe(II)(tn-OEP)(1-MeIm)(2) at a constant potential of 0.69 V in dichloromethane with 0.1 M tetrabutylammonium perchlorate as the supporting electrolyte generates Fe(III)(tn-OEP)(1-MeIm)(2) x ClO(4), which has the same EPR spectrum and which upon reduction at 0.29 V regenerates Fe(II)(tn-OEP)(1-MeIm)(2) again. Thus, we have demonstrated here, for the first time, that iron(II) and iron(III) porphyrinates with two planar and unhindered axial imidazoles have different orientation preferences in a nonplanar porphyrinic environment.
我们首次报道了两个平面且无阻的咪唑作为轴向配体(L)分别与铁(III)和铁(II)卟啉配位时的平行和垂直取向偏好,这是在非平面卟啉环境中发生的。本文报道了低自旋 Fe(III)(tn-OEP)(L)(2) x ClO(4) 和 Fe(II)(tn-OEP)(L)(2)的合成和表征。Fe(III)(tn-OEP)(L)(2) x ClO(4) 在固态和溶液相中的电子顺磁共振(EPR)光谱(在 77 K 下)均呈菱形,这非常典型地表明,该化合物中的低自旋(S = 1/2)铁卟啉具有两个彼此平行排列的轴向咪唑配体。还使用密度泛函理论(DFT)对 Fe(III)(tn-OEP)(1-MeIm)(2)(+) 进行单点能量计算,结果表明,两个 1-MeIm 的相对平行取向比垂直取向更稳定。本文还报道了 Fe(II)(tn-OEP)(1-MeIm)(2) 和 Fe(II)(tn-OEP)(1-MeIm)(2).THF 的 X 射线结构,这是首次在扭曲的大环环境中观察到铁(II)卟啉的轴向配体近乎垂直的取向(分别为 80.9 和 89.8 度)。即使从轴向 1-MeIm 的平行取向开始,使用 DFT 进行的几何优化也很好地收敛到垂直轴向排列,二面角为 82.54 度,这与实验结果非常吻合。这与之前的所有报道形成鲜明对比,之前的报道均表明,轴向配体需要具有空间位阻的咪唑(如 2-MeIm)或具有“篱栅”环境的几乎平面卟啉核,以限制轴向配体的旋转,才能实现垂直取向。从 Fe(II)(tn-OEP)(L)(2)的循环伏安研究中获得的电化学数据表明,在非常正的电势下可进行单电子氧化,这很容易解释为什么这些配合物在空气中如此稳定。在二氯甲烷中,以 0.1 M 四丁基高氯酸铵为支持电解质,在恒定电势 0.69 V 下,对 Fe(II)(tn-OEP)(1-MeIm)(2)进行批量氧化,生成 Fe(III)(tn-OEP)(1-MeIm)(2) x ClO(4),其具有相同的 EPR 光谱,在 0.29 V 下还原时,再次生成 Fe(II)(tn-OEP)(1-MeIm)(2)。因此,我们首次证明了,在非平面卟啉环境中,具有两个平面且无阻的轴向咪唑的铁(II)和铁(III)卟啉具有不同的取向偏好。