Kliewe Christian, Souffrant Robert, Kluess Daniel, Woernle Christoph, Brökel Klaus, Bader Rainer
Lehrstuhl Konstruktionstechnik/CAD, Universität Rostock, Rostock, Germany.
Biomed Tech (Berl). 2010 Feb;55(1):47-55. doi: 10.1515/BMT.2010.005.
Impingement and dislocations rank among the frequent failure causes of hip endoprotheses. The further optimization of endoprotheses requires a comprehensive mathematical description of the kinematics with consideration of surgical and design parameters. For the investigation of dislocation behavior, spatial movements up to impingement with associated load scenarios should be generated. We present fundamentals for the determination of the range of motion of total hip replacements with consideration of multidirectional, superimposed movements. Therefore, the remaining angle, e.g., of abduction/adduction or internal/external rotation depending on flexion/extension can be calculated. Thereby, the substantial design parameters such as head and neck diameter, CCD angle and head coverage are considered. Moreover, the position of the acetabular cup in terms of inclination and anteversion angle as well as neck anteversion is considered. Using this approach, especially designed for superimposed movements, residual range of motion for given movements, e.g., abduction or internal rotation for given angles of flexion/extension can be calculated. Thus, the critical dislocation-initiating joint positions for primary or revision total hip arthroplasty can be determined for arbitrary superimposed movements; subsequently, the operating surgeon can evaluate the maximum range of motion for a given implant position. Additionally, the calculations are of help for further geometrical optimization of implants. The calculation algorithms can be used to create ROM maps (graphical illustration of the range of motion depending on implant position) which support the operating surgeon in placement of the implant components. Moreover, our results are utilized for experimental test setups to analyze impingement and subluxation.
撞击和脱位是髋关节假体常见的失效原因。要进一步优化假体,需要在考虑手术和设计参数的情况下,对运动学进行全面的数学描述。为了研究脱位行为,应生成直至撞击的空间运动以及相关的负荷情况。我们提出了在考虑多方向叠加运动的情况下确定全髋关节置换活动范围的基本方法。因此,可以计算出例如取决于屈伸的外展/内收或内旋/外旋的剩余角度。由此,考虑了诸如股骨头和颈直径、颈干角和股骨头覆盖等重要设计参数。此外,还考虑了髋臼杯在倾斜度和前倾角方面的位置以及颈前倾角。使用这种专门为叠加运动设计的方法,可以计算出给定运动(例如在给定屈伸角度下的外展或内旋)的剩余活动范围。因此,可以为任意叠加运动确定初次或翻修全髋关节置换术中关键的脱位起始关节位置;随后,手术医生可以评估给定植入物位置的最大活动范围。此外,这些计算有助于对植入物进行进一步的几何优化。计算算法可用于创建活动范围图(根据植入物位置绘制的活动范围的图形说明),以支持手术医生放置植入物组件。此外,我们的结果用于实验测试设置,以分析撞击和半脱位。