Suppr超能文献

用于放射性药物的非常规核素。

Unconventional nuclides for radiopharmaceuticals.

机构信息

Radiochemistry Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Mol Imaging. 2010 Feb;9(1):1-20.

Abstract

Rapid and widespread growth in the use of nuclear medicine for both diagnosis and therapy of disease has been the driving force behind burgeoning research interests in the design of novel radiopharmaceuticals. Until recently, the majority of clinical and basic science research has focused on the development of 11C-, 13N-, 15O-, and 18F-radiopharmaceuticals for use with positron emission tomography (PET) and 99mTc-labeled agents for use with single-photon emission computed tomography (SPECT). With the increased availability of small, low-energy cyclotrons and improvements in both cyclotron targetry and purification chemistries, the use of "nonstandard" radionuclides is becoming more prevalent. This brief review describes the physical characteristics of 60 radionuclides, including beta+, beta-, gamma-ray, and alpha-particle emitters, which have the potential for use in the design and synthesis of the next generation of diagnostic and/or radiotherapeutic drugs. As the decay processes of many of the radionuclides described herein involve emission of high-energy gamma-rays, relevant shielding and radiation safety issues are also considered. In particular, the properties and safety considerations associated with the increasingly prevalent PET nuclides 64Cu, 68Ga, 86Y, 89Zr, and 124I are discussed.

摘要

核医学在疾病诊断和治疗中的应用迅速广泛发展,这是新型放射性药物设计研究兴趣蓬勃发展的动力。直到最近,大多数临床和基础科学研究都集中在开发用于正电子发射断层扫描(PET)的 11C、13N、15O 和 18F 放射性药物,以及用于单光子发射计算机断层扫描(SPECT)的 99mTc 标记剂。随着小型、低能回旋加速器的可用性增加,以及回旋加速器靶材和纯化化学的改进,“非标准”放射性核素的使用越来越普遍。本文简要介绍了 60 种放射性核素的物理特性,包括β+、β-、γ射线和α粒子发射器,这些核素有可能用于设计和合成下一代诊断和/或放射性治疗药物。由于本文所述的许多放射性核素的衰变过程涉及高能γ射线的发射,因此还考虑了相关的屏蔽和辐射安全问题。特别是,讨论了日益流行的 PET 核素 64Cu、68Ga、86Y、89Zr 和 124I 的特性和安全考虑因素。

相似文献

1
2
Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities.
Health Phys. 2008 Nov;95(5):554-70. doi: 10.1097/01.HP.0000327651.15794.f7.
3
Development of novel radionuclides for medical applications.
J Labelled Comp Radiopharm. 2018 Mar;61(3):126-140. doi: 10.1002/jlcr.3578. Epub 2017 Dec 29.
4
PET tracers based on (86)Y.
Curr Radiopharm. 2011 Apr;4(2):122-30. doi: 10.2174/1874471011104020122.
5
Production of non-standard PET radionuclides and the application of radiopharmaceuticals labeled with these nuclides.
Ernst Schering Res Found Workshop. 2007(62):159-81. doi: 10.1007/978-3-540-49527-7_6.
6
Radiopharmaceuticals for brain imaging.
Semin Nucl Med. 1994 Oct;24(4):324-49. doi: 10.1016/s0001-2998(05)80022-4.
7
Radiopharmaceuticals Labelled with Copper Radionuclides: Clinical Results in Human Beings.
Curr Radiopharm. 2018;11(1):22-33. doi: 10.2174/1874471011666171211161851.
8
Decay data and production yields of some non-standard positron emitters used in PET.
Q J Nucl Med Mol Imaging. 2008 Jun;52(2):111-20. Epub 2008 Jan 5.

引用本文的文献

1
New tactics in the design of theranostic radiotracers.
Npj Imaging. 2024 Aug 2;2(1):23. doi: 10.1038/s44303-024-00027-1.
2
Recent Advances on Pt-Based Compounds for Theranostic Applications.
Molecules. 2024 Jul 23;29(15):3453. doi: 10.3390/molecules29153453.
3
Radiochemistry: A Hot Field with Opportunities for Cool Chemistry.
ACS Cent Sci. 2023 Nov 14;9(12):2183-2195. doi: 10.1021/acscentsci.3c01050. eCollection 2023 Dec 27.
4
Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents.
Adv Healthc Mater. 2024 Jan;13(1):e2301404. doi: 10.1002/adhm.202301404. Epub 2023 Sep 28.
5
Designed ankyrin repeat proteins for detecting prostate-specific antigen expression .
RSC Chem Biol. 2023 May 17;4(7):494-505. doi: 10.1039/d3cb00010a. eCollection 2023 Jul 5.
6
Heptadentate chelates for Zr-radiolabelling of monoclonal antibodies.
Inorg Chem Front. 2022 May 10;9(12):3071-3081. doi: 10.1039/d2qi00442a. eCollection 2022 Jun 14.
9
Photoactivatable bis(thiosemicarbazone) derivatives for copper-64 radiotracer synthesis.
Dalton Trans. 2022 Mar 29;51(13):5041-5052. doi: 10.1039/d2dt00209d.
10
Thermodynamic Stability and Speciation of Ga(III) and Zr(IV) Complexes with High-Denticity Hydroxamate Chelators.
Inorg Chem. 2021 Sep 6;60(17):13332-13347. doi: 10.1021/acs.inorgchem.1c01622. Epub 2021 Aug 20.

本文引用的文献

1
Astatine Radiopharmaceuticals: Prospects and Problems.
Curr Radiopharm. 2008 Sep 1;1(3):177. doi: 10.2174/1874471010801030177.
2
Standardized methods for the production of high specific-activity zirconium-89.
Nucl Med Biol. 2009 Oct;36(7):729-39. doi: 10.1016/j.nucmedbio.2009.05.007. Epub 2009 Jul 29.
3
68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy.
J Nucl Med. 2009 Sep;50(9):1427-34. doi: 10.2967/jnumed.108.053421. Epub 2009 Aug 18.
5
Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy.
J Nucl Med. 2009 Aug;50(8):1214-21. doi: 10.2967/jnumed.108.060236. Epub 2009 Jul 17.
6
Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET.
J Nucl Med. 2009 May;50 Suppl 1(Suppl 1):106S-21S. doi: 10.2967/jnumed.108.057281. Epub 2009 Apr 20.
7
Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges.
Bioconjug Chem. 2009 May 20;20(5):825-41. doi: 10.1021/bc800299f.
8
Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography.
Angew Chem Int Ed Engl. 2008;47(47):8998-9033. doi: 10.1002/anie.200800222.
9
Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa.
Anal Chem. 2008 Nov 15;80(22):8763-70. doi: 10.1021/ac801304c. Epub 2008 Oct 17.
10
Alpha-particle radioimmunotherapy with astatine-211 and bismuth-213.
Eur J Nucl Med Mol Imaging. 2008 Sep;35(9):1729-33. doi: 10.1007/s00259-008-0856-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验