Suppr超能文献

丝裂原活化蛋白激酶 ERK1/2 磷酸化钠通道 Na(v)1.7 并改变其门控特性。

ERK1/2 mitogen-activated protein kinase phosphorylates sodium channel Na(v)1.7 and alters its gating properties.

机构信息

Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

出版信息

J Neurosci. 2010 Feb 3;30(5):1637-47. doi: 10.1523/JNEUROSCI.4872-09.2010.

Abstract

Na(v)1.7 sodium channels can amplify weak stimuli in neurons and act as threshold channels for firing action potentials. Neurotrophic factors and pro-nociceptive cytokines that are released during development and under pathological conditions activate mitogen-activated protein kinases (MAPKs). Previous studies have shown that MAPKs can transduce developmental or pathological signals by regulating transcription factors that initiate a gene expression response, a long-term effect, and directly modulate neuronal ion channels including sodium channels, thus acutely regulating dorsal root ganglion (DRG) neuron excitability. For example, neurotrophic growth factor activates (phosphorylates) ERK1/2 MAPK (pERK1/2) in DRG neurons, an effect that has been implicated in injury-induced hyperalgesia. However, the acute effects of pERK1/2 on sodium channels are not known. We have shown previously that activated p38 MAPK (pp38) directly phosphorylates Na(v)1.6 and Na(v)1.8 sodium channels and regulates their current densities without altering their gating properties. We now report that acute inhibition of pERK1/2 regulates resting membrane potential and firing properties of DRG neurons. We also show that pERK1 phosphorylates specific residues within L1 of Na(v)1.7, inhibition of pERK1/2 causes a depolarizing shift of activation and fast inactivation of Na(v)1.7 without altering current density, and mutation of these L1 phosphoacceptor sites abrogates the effect of pERK1/2 on this channel. Together, these data are consistent with direct phosphorylation and modulation of Na(v)1.7 by pERK1/2, which unlike the modulation of Na(v)1.6 and Na(v)1.8 by pp38, regulates gating properties of this channel but not its current density and contributes to the effects of MAPKs on DRG neuron excitability.

摘要

Nav1.7 钠通道可放大神经元中的弱刺激,并作为引发动作电位的阈通道。神经营养因子和致痛性细胞因子在发育过程中和病理条件下释放,可激活丝裂原活化蛋白激酶 (MAPK)。先前的研究表明,MAPK 可通过调节转录因子来传递发育或病理信号,这些转录因子启动基因表达反应,产生长期效应,并直接调节包括钠通道在内的神经元离子通道,从而急性调节背根神经节 (DRG) 神经元兴奋性。例如,神经营养生长因子在 DRG 神经元中激活 (磷酸化) ERK1/2 MAPK (pERK1/2),这种作用与损伤诱导的痛觉过敏有关。然而,pERK1/2 对钠通道的急性影响尚不清楚。我们之前已经表明,激活的 p38 MAPK (pp38) 可直接磷酸化 Nav1.6 和 Nav1.8 钠通道,调节它们的电流密度,而不改变其门控特性。我们现在报告称,急性抑制 pERK1/2 可调节 DRG 神经元的静息膜电位和放电特性。我们还表明,pERK1 在 Nav1.7 的 L1 内磷酸化特定残基,抑制 pERK1/2 会导致 Nav1.7 的激活和快速失活产生去极化偏移,而不改变电流密度,并且这些 L1 磷酸接受位点的突变会消除 pERK1/2 对该通道的影响。总之,这些数据与 pERK1/2 对 Nav1.7 的直接磷酸化和调节一致,与 pp38 对 Nav1.6 和 Nav1.8 的调节不同,pERK1/2 调节该通道的门控特性,而不调节其电流密度,并有助于 MAPK 对 DRG 神经元兴奋性的影响。

相似文献

1
4
Gating properties of Na(v)1.7 and Na(v)1.8 peripheral nerve sodium channels.
J Neurosci. 2001 Oct 15;21(20):7909-18. doi: 10.1523/JNEUROSCI.21-20-07909.2001.
7
Na+ channel Scn1b gene regulates dorsal root ganglion nociceptor excitability in vivo.
J Biol Chem. 2011 Jul 1;286(26):22913-23. doi: 10.1074/jbc.M111.242370. Epub 2011 May 9.
10
Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase.
J Neurosci. 2005 Jul 13;25(28):6621-30. doi: 10.1523/JNEUROSCI.0541-05.2005.

引用本文的文献

1
Paclitaxel-induced adverse effects: insights into multi-organ toxicities and molecular mechanisms.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Aug 27. doi: 10.1007/s00210-025-04480-6.
4
Preclinical Animal Models to Investigate the Role of Na1.7 Ion Channels in Pain.
Life (Basel). 2025 Apr 12;15(4):640. doi: 10.3390/life15040640.
5
Sculpting excitable membranes: voltage-gated ion channel delivery and distribution.
Nat Rev Neurosci. 2025 Apr 2. doi: 10.1038/s41583-025-00917-2.
6
Novel therapies for cancer-induced bone pain.
Neurobiol Pain. 2024 Sep 26;16:100167. doi: 10.1016/j.ynpai.2024.100167. eCollection 2024 Jul-Dec.
7
Sustained nerve growth factor-induced C-nociceptor sensitization to electrical sinusoidal stimulation in humans.
Pain Rep. 2024 Sep 20;9(5):e1190. doi: 10.1097/PR9.0000000000001190. eCollection 2024 Oct.

本文引用的文献

1
Transfection of rat or mouse neurons by biolistics or electroporation.
Nat Protoc. 2009;4(8):1118-26. doi: 10.1038/nprot.2009.90. Epub 2009 Jul 9.
2
Voltage-clamp and current-clamp recordings from mammalian DRG neurons.
Nat Protoc. 2009;4(8):1103-12. doi: 10.1038/nprot.2009.91. Epub 2009 Jul 9.
3
Voltage-gated sodium channels in pain states: role in pathophysiology and targets for treatment.
Brain Res Rev. 2009 Apr;60(1):65-83. doi: 10.1016/j.brainresrev.2008.12.005. Epub 2008 Dec 25.
4
MAP kinase and pain.
Brain Res Rev. 2009 Apr;60(1):135-48. doi: 10.1016/j.brainresrev.2008.12.011. Epub 2008 Dec 25.
5
Nociceptors are interleukin-1beta sensors.
J Neurosci. 2008 Dec 24;28(52):14062-73. doi: 10.1523/JNEUROSCI.3795-08.2008.
8
Growth factors differentially regulate neuronal Cav channels via ERK-dependent signalling.
Cell Calcium. 2008 Jun;43(6):562-75. doi: 10.1016/j.ceca.2007.10.001. Epub 2007 Nov 9.
9
From genes to pain: Na v 1.7 and human pain disorders.
Trends Neurosci. 2007 Nov;30(11):555-63. doi: 10.1016/j.tins.2007.08.004. Epub 2007 Oct 22.
10
An SCN9A channelopathy causes congenital inability to experience pain.
Nature. 2006 Dec 14;444(7121):894-8. doi: 10.1038/nature05413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验