Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
J Neurosci. 2010 Feb 3;30(5):1637-47. doi: 10.1523/JNEUROSCI.4872-09.2010.
Na(v)1.7 sodium channels can amplify weak stimuli in neurons and act as threshold channels for firing action potentials. Neurotrophic factors and pro-nociceptive cytokines that are released during development and under pathological conditions activate mitogen-activated protein kinases (MAPKs). Previous studies have shown that MAPKs can transduce developmental or pathological signals by regulating transcription factors that initiate a gene expression response, a long-term effect, and directly modulate neuronal ion channels including sodium channels, thus acutely regulating dorsal root ganglion (DRG) neuron excitability. For example, neurotrophic growth factor activates (phosphorylates) ERK1/2 MAPK (pERK1/2) in DRG neurons, an effect that has been implicated in injury-induced hyperalgesia. However, the acute effects of pERK1/2 on sodium channels are not known. We have shown previously that activated p38 MAPK (pp38) directly phosphorylates Na(v)1.6 and Na(v)1.8 sodium channels and regulates their current densities without altering their gating properties. We now report that acute inhibition of pERK1/2 regulates resting membrane potential and firing properties of DRG neurons. We also show that pERK1 phosphorylates specific residues within L1 of Na(v)1.7, inhibition of pERK1/2 causes a depolarizing shift of activation and fast inactivation of Na(v)1.7 without altering current density, and mutation of these L1 phosphoacceptor sites abrogates the effect of pERK1/2 on this channel. Together, these data are consistent with direct phosphorylation and modulation of Na(v)1.7 by pERK1/2, which unlike the modulation of Na(v)1.6 and Na(v)1.8 by pp38, regulates gating properties of this channel but not its current density and contributes to the effects of MAPKs on DRG neuron excitability.
Nav1.7 钠通道可放大神经元中的弱刺激,并作为引发动作电位的阈通道。神经营养因子和致痛性细胞因子在发育过程中和病理条件下释放,可激活丝裂原活化蛋白激酶 (MAPK)。先前的研究表明,MAPK 可通过调节转录因子来传递发育或病理信号,这些转录因子启动基因表达反应,产生长期效应,并直接调节包括钠通道在内的神经元离子通道,从而急性调节背根神经节 (DRG) 神经元兴奋性。例如,神经营养生长因子在 DRG 神经元中激活 (磷酸化) ERK1/2 MAPK (pERK1/2),这种作用与损伤诱导的痛觉过敏有关。然而,pERK1/2 对钠通道的急性影响尚不清楚。我们之前已经表明,激活的 p38 MAPK (pp38) 可直接磷酸化 Nav1.6 和 Nav1.8 钠通道,调节它们的电流密度,而不改变其门控特性。我们现在报告称,急性抑制 pERK1/2 可调节 DRG 神经元的静息膜电位和放电特性。我们还表明,pERK1 在 Nav1.7 的 L1 内磷酸化特定残基,抑制 pERK1/2 会导致 Nav1.7 的激活和快速失活产生去极化偏移,而不改变电流密度,并且这些 L1 磷酸接受位点的突变会消除 pERK1/2 对该通道的影响。总之,这些数据与 pERK1/2 对 Nav1.7 的直接磷酸化和调节一致,与 pp38 对 Nav1.6 和 Nav1.8 的调节不同,pERK1/2 调节该通道的门控特性,而不调节其电流密度,并有助于 MAPK 对 DRG 神经元兴奋性的影响。