Suppr超能文献

Crystal Structural and Functional Analysis of the Putative Dipeptidase from Pyrococcus horikoshii OT3.

作者信息

Jeyakanthan Jeyaraman, Takada Katsumi, Sawano Masahide, Ogasahara Kyoko, Mizutani Hisashi, Kunishima Naoki, Yokoyama Shigeyuki, Yutani Katsuhide

机构信息

Experimental Facility Division, SPring-8 Group, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Hsinchu Science Park, Taiwan.

出版信息

J Biophys. 2009;2009:434038. doi: 10.1155/2009/434038. Epub 2009 Jun 28.

Abstract

The crystal structure of a putative dipeptidase (Phdpd) from Pyrococcus horikoshii OT3 was solved using X-ray data at 2.4 A resolution. The protein is folded into two distinct entities. The N-terminal domain consists of the general topology of the alpha/beta fold, and the C-terminal domain consists of five long mixed strands, four helices, and two 3(10) helices. The structure of Phdpd is quite similar to reported structures of prolidases from P. furiosus (Zn-Pfprol) and P. horikoshii (Zn-Phdpd), where Zn ions are observed in the active site resulting in an inactive form. However, Phdpd did not contain metals in the crystal structure and showed prolidase activity in the absence of additional Co ions, whereas the specific activities increased by 5 times in the presence of a sufficient concentration (1.2 mM) of Co ions. The substrate specificities (X-Pro) of Phdpd were broad compared with those of Zn-Phdpd in the presence of Co ions, whose relative activities are 10% or less for substrates other than Met-Pro, which is the most favorable substrate. The binding constants of Zn-Phdpd with three metals (Zn, Co, and Mn) were higher than those of Phdpd and that with Zn was higher by greater than 2 orders, which were determined by DSC experiments. From the structural comparison of both forms and the above experimental results, it could be elucidated why the protein with Zn(2+) ions is inactive.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/752a/2814137/81dd78cd5fb5/JBP2009-434038.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验