Suppr超能文献

蛋白激酶 C 相关激酶在缺氧诱导的神经突形成和稳定性中的重要作用。

Vital role of protein kinase C-related kinase in the formation and stability of neurites during hypoxia.

机构信息

Med. University of Innsbruck, Biocenter, Division of Neurobiochemistry, A-6020 Innsbruck, Austria.

出版信息

J Neurochem. 2010 Apr;113(2):432-46. doi: 10.1111/j.1471-4159.2010.06624.x. Epub 2010 Jan 28.

Abstract

Exposure of pheochromocytoma cells to hypoxia (1% O(2)) favors differentiation at the expense of cell viability. Additional incubation with nerve growth factor (NGF) and guanosine, a purine nucleoside with neurotrophin characteristics, rescued cell viability and further enhanced the extension of neurites. In parallel, an increase in the activity of protein kinase C-related kinase (PRK1), which is known to be involved in regulation of the actin cytoskeleton, was observed in hypoxic cells. NGF and guanosine further enhanced PRK1 in normoxic and hypoxic cells. To study the role of PRK1 during cellular stress response and neurotrophin-mediated signaling, pheochromocytoma cells were transfected with small interfering RNA directed against PRK1. Loss of functional PRK1 initiated a significant loss of viability and inhibited neurite formation. SiRNA-mediated knockdown of PRK1 also completely stalled guanosine-mediated neuroprotective effects. Additionally, the F-actin-associated cytoskeleton and the expression of the plasticity protein growth associated protein-43 were disturbed upon PRK1 knockdown. A comparable dependency of neurite formation and growth associated protein-43 immunoreactivity on functional PRK1 expression was observed in cerebellar granule neurons. Based on these data, a putative role of PRK1 as a key-signaling element for the successive NGF- and purine nucleoside-mediated protection of hypoxic neuronal cells is hypothesized.

摘要

暴露于低氧(1% O2)环境下的嗜铬细胞瘤细胞倾向于分化,而牺牲细胞活力。用神经生长因子(NGF)和鸟嘌呤进一步孵育,鸟嘌呤是一种具有神经营养特性的嘌呤核苷,可以挽救细胞活力,并进一步增强神经突的延伸。与此同时,在缺氧细胞中观察到蛋白激酶 C 相关激酶(PRK1)的活性增加,PRK1 已知参与细胞骨架肌动蛋白的调节。NGF 和鸟嘌呤进一步增强了正常氧和低氧细胞中的 PRK1。为了研究 PRK1 在细胞应激反应和神经营养因子介导的信号转导中的作用,用针对 PRK1 的小干扰 RNA 转染嗜铬细胞瘤细胞。功能性 PRK1 的缺失会导致细胞活力显著丧失,并抑制神经突形成。PRK1 的 siRNA 介导的敲低也完全阻止了鸟嘌呤介导的神经保护作用。此外,PRK1 敲低后,与 F-肌动蛋白相关的细胞骨架和可塑性蛋白生长相关蛋白-43 的表达也受到干扰。在小脑颗粒神经元中,观察到神经突形成和生长相关蛋白-43 免疫反应性对功能性 PRK1 表达的类似依赖性。基于这些数据,假设 PRK1 作为关键信号元件,参与连续的 NGF 和嘌呤核苷介导的缺氧神经元细胞保护作用。

相似文献

1
Vital role of protein kinase C-related kinase in the formation and stability of neurites during hypoxia.
J Neurochem. 2010 Apr;113(2):432-46. doi: 10.1111/j.1471-4159.2010.06624.x. Epub 2010 Jan 28.
5
Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth.
J Neurosci. 2003 Mar 1;23(5):1638-48. doi: 10.1523/JNEUROSCI.23-05-01638.2003.
8
Nemo-like kinase is involved in NGF-induced neurite outgrowth via phosphorylating MAP1B and paxillin.
J Neurochem. 2009 Dec;111(5):1104-18. doi: 10.1111/j.1471-4159.2009.06400.x. Epub 2009 Oct 16.

引用本文的文献

1
Lipid-Binding Regions within PKC-Related Serine/Threonine Protein Kinase N1 (PKN1) Required for Its Regulation.
Biochemistry. 2024 Mar 19;63(6):743-753. doi: 10.1021/acs.biochem.4c00009. Epub 2024 Mar 5.
2
Neuroprotective Effects of Guanosine in Ischemic Stroke-Small Steps towards Effective Therapy.
Int J Mol Sci. 2021 Jun 27;22(13):6898. doi: 10.3390/ijms22136898.
6
Neuromodulatory Effects of Guanine-Based Purines in Health and Disease.
Front Cell Neurosci. 2018 Oct 23;12:376. doi: 10.3389/fncel.2018.00376. eCollection 2018.
7
Protein kinase N1 critically regulates cerebellar development and long-term function.
J Clin Invest. 2018 May 1;128(5):2076-2088. doi: 10.1172/JCI96165. Epub 2018 Apr 16.
8
Guanosine: a Neuromodulator with Therapeutic Potential in Brain Disorders.
Aging Dis. 2016 Oct 1;7(5):657-679. doi: 10.14336/AD.2016.0208. eCollection 2016 Oct.
9
Guanosine and its role in neuropathologies.
Purinergic Signal. 2016 Sep;12(3):411-26. doi: 10.1007/s11302-016-9509-4. Epub 2016 Mar 22.
10
Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons.
Curr Neuropharmacol. 2014 May;12(3):213-8. doi: 10.2174/1570159X11666131225000518.

本文引用的文献

1
Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia.
Clin Cancer Res. 2008 Oct 1;14(19):5947-52. doi: 10.1158/1078-0432.CCR-08-0229.
4
GAP-43 is key to mitotic spindle control and centrosome-based polarization in neurons.
Cell Cycle. 2008 Feb 1;7(3):348-57. doi: 10.4161/cc.7.3.5235. Epub 2007 Nov 1.
5
The Rac1 polybasic region is required for interaction with its effector PRK1.
J Biol Chem. 2008 Jan 18;283(3):1492-1500. doi: 10.1074/jbc.M706760200. Epub 2007 Nov 15.
6
Proposal of a guanine-based purinergic system in the mammalian central nervous system.
Pharmacol Ther. 2007 Dec;116(3):401-16. doi: 10.1016/j.pharmthera.2007.07.004. Epub 2007 Aug 22.
7
Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation.
Neurochem Int. 2008 Feb;52(3):411-8. doi: 10.1016/j.neuint.2007.07.017. Epub 2007 Aug 1.
8
Adenosine, an endogenous distress signal, modulates tissue damage and repair.
Cell Death Differ. 2007 Jul;14(7):1315-23. doi: 10.1038/sj.cdd.4402132. Epub 2007 Mar 30.
10
Nucleofection of primary neurons.
Methods Enzymol. 2006;406:374-88. doi: 10.1016/S0076-6879(06)06027-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验