Institute for Systems Biology, Seattle, WA 98103, USA.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3076-80. doi: 10.1073/pnas.0913087107. Epub 2010 Feb 1.
The mammalian innate immune system uses Toll-like receptors (TLRs) and Nod-LRRs (NLRs) to detect microbial components during infection. Often these molecules work in concert; for example, the TLRs can stimulate the production of the proforms of the cytokines IL-1beta and IL-18, whereas certain NLRs trigger their subsequent proteolytic processing via caspase 1. Gram-negative bacteria use type III secretion systems (T3SS) to deliver virulence factors to the cytosol of host cells, where they modulate cell physiology to favor the pathogen. We show here that NLRC4/Ipaf detects the basal body rod component of the T3SS apparatus (rod protein) from S. typhimurium (PrgJ), Burkholderia pseudomallei (BsaK), Escherichia coli (EprJ and EscI), Shigella flexneri (MxiI), and Pseudomonas aeruginosa (PscI). These rod proteins share a sequence motif that is essential for detection by NLRC4; a similar motif is found in flagellin that is also detected by NLRC4. S. typhimurium has two T3SS: Salmonella pathogenicity island-1 (SPI1), which encodes the rod protein PrgJ, and SPI2, which encodes the rod protein SsaI. Although PrgJ is detected by NLRC4, SsaI is not, and this evasion is required for virulence in mice. The detection of a conserved component of the T3SS apparatus enables innate immune responses to virulent bacteria through a single pathway, a strategy that is divergent from that used by plants in which multiple NB-LRR proteins are used to detect T3SS effectors or their effects on cells. Furthermore, the specific detection of the virulence machinery permits the discrimination between pathogenic and nonpathogenic bacteria.
哺乳动物先天免疫系统利用 Toll 样受体 (TLRs) 和 Nod-LRRs (NLRs) 在感染过程中检测微生物成分。这些分子通常协同工作;例如,TLRs 可以刺激细胞因子 IL-1beta 和 IL-18 的前体形式的产生,而某些 NLRs 通过半胱天冬酶 1 触发它们随后的蛋白水解加工。革兰氏阴性菌使用 III 型分泌系统 (T3SS) 将毒力因子递送到宿主细胞的细胞质中,在那里它们调节细胞生理学以有利于病原体。我们在这里表明,NLRC4/Ipaf 从鼠伤寒沙门氏菌 (PrgJ)、鼻疽伯克霍尔德菌 (BsaK)、大肠杆菌 (EprJ 和 EscI)、福氏志贺菌 (MxiI) 和铜绿假单胞菌 (PscI) 中检测到 T3SS 装置的基体杆组件 (杆蛋白)。这些杆蛋白共享一个对 NLRC4 检测至关重要的序列基序;鞭毛蛋白中也发现了类似的基序,它也被 NLRC4 检测到。鼠伤寒沙门氏菌有两个 T3SS:沙门氏菌致病性岛-1 (SPI1),它编码杆蛋白 PrgJ,和 SPI2,它编码杆蛋白 SsaI。尽管 PrgJ 被 NLRC4 检测到,但 SsaI 没有,这种逃避是在小鼠中产生毒力所必需的。T3SS 装置的保守成分的检测使先天免疫反应能够通过单一途径对有毒细菌作出反应,这与植物中使用多个 NB-LRR 蛋白来检测 T3SS 效应子或它们对细胞的影响的策略不同。此外,对毒力机制的特异性检测允许在致病性和非致病性细菌之间进行区分。
Proc Natl Acad Sci U S A. 2010-2-1
Infect Immun. 2011-1-31
J Clin Immunol. 2010-3-27
J Transl Int Med. 2025-8-12
Cell Insight. 2025-2-13
Immunol Rev. 2009-1
Proc Natl Acad Sci U S A. 2008-2-19
Eur J Immunol. 2007-11
BMC Bioinformatics. 2007-8-21
Semin Immunopathol. 2007-9