Suppr超能文献

电场增强可极化材料衬底上的储氢。

Electric field enhanced hydrogen storage on polarizable materials substrates.

机构信息

Department of Advanced Materials and Nanotechnology, and Center for Applied Physics and Technology, Peking University, Beijing 100871, China.

出版信息

Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2801-6. doi: 10.1073/pnas.0905571107. Epub 2010 Feb 1.

Abstract

Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H(2) molecules is adsorbed on a BN sheet, the binding energy per H(2) molecule increases from 0.03 eV/H(2) in the field-free case to 0.14 eV/H(2) in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H(2) can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H(2) molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials.

摘要

利用密度泛函理论,我们表明外加电场可以显著提高可极化衬底的储氢性能。这一全新概念通过在多种纳米材料上吸附单层氢气分子得到了验证。当一层 H(2)分子被吸附在 BN 片上时,每个 H(2)分子的结合能从无电场情况下的 0.03 eV/H(2)增加到外加 0.045 埃电场时的 0.14 eV/H(2)。相应的 7.5wt%的重量密度与能源部设定的 2010 年 6wt%系统目标一致。如果衬底具有更高的极化率,则可以降低外加电场的强度。例如,在 AlN 衬底上施加 0.03 埃的电场、在硅氧烷分子上施加 0.006 埃的电场、在硅氧烷片上施加 0.007 埃的电场,就可以实现 0.14 eV/H(2)的氢气吸附能。因此,在外加电场的作用下,可极化衬底为储氢提供了一种新途径;一旦去除外加电场,存储的 H(2)分子可以很容易地释放出来,从而使存储具有快速动力学的可逆性。此外,我们还表明,富含低配位非金属阴离子的材料具有很高的极化率,这可以为新型储氢材料的设计提供指导。

相似文献

1
Electric field enhanced hydrogen storage on polarizable materials substrates.电场增强可极化材料衬底上的储氢。
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2801-6. doi: 10.1073/pnas.0905571107. Epub 2010 Feb 1.
4
Storage of molecular hydrogen in B-N cage: energetics and thermal stability.
Nano Lett. 2005 Jul;5(7):1273-7. doi: 10.1021/nl050385p.
6
Hydrogen storage and the 18-electron rule.储氢与18电子规则。
J Chem Phys. 2006 Jun 14;124(22):224703. doi: 10.1063/1.2202320.
9
Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.氮化铝纳米线/纳米管储氢的计算研究。
Nanotechnology. 2009 May 27;20(21):215701. doi: 10.1088/0957-4484/20/21/215701. Epub 2009 May 6.

引用本文的文献

本文引用的文献

1
Junctions between a boron nitride nanotube and a boron nitride sheet.氮化硼纳米管与氮化硼片之间的连接。
Nanotechnology. 2008 Feb 20;19(7):075704. doi: 10.1088/0957-4484/19/7/075704. Epub 2008 Jan 31.
5
Energy gaps and stark effect in boron nitride nanoribbons.氮化硼纳米带中的能隙与斯塔克效应。
Nano Lett. 2008 Aug;8(8):2200-3. doi: 10.1021/nl080695i. Epub 2008 Jul 2.
8
First-principles study of hydrogen storage on Li12C60.Li12C60储氢的第一性原理研究。
J Am Chem Soc. 2006 Aug 2;128(30):9741-5. doi: 10.1021/ja058330c.
10
Optimum conditions for adsorptive storage.吸附储存的最佳条件。
Langmuir. 2006 Feb 14;22(4):1688-700. doi: 10.1021/la0523816.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验