Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, 76100.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2836-41. doi: 10.1073/pnas.0908919107. Epub 2010 Feb 1.
The coalescence of basic biochemical reactions into compartments is a major hallmark of a living cell. Using surface-bound DNA and a transcription reaction, we investigate the conditions for boundary-free compartmentalization. The DNA self-organizes into a dense and ordered phase with coding sequences aligned at well-defined distances and orientation relative to the surface, imposing directionality on transcription. Unique to the surface in comparison to dilute homogeneous DNA solution, the reaction slows down early, is inhibited with increased DNA density, is favorable for surface-oriented promoters, and is robust against DNA condensation. We interpret these results to suggest that macromolecules (RNA polymerase and RNA), but not solutes (ions and nucleotides), are partitioned between immobilized DNA and the reservoir. Without any physical barrier, a nonequilibrium directional DNA transaction forms macromolecular gradients that define a compartment, thus offering a boundary-free approach to the assembly of a synthetic cell.
基本生化反应在隔间中的融合是活细胞的主要标志。我们使用表面结合的 DNA 和转录反应来研究无边界隔室化的条件。DNA 自组织成一个密集且有序的相,编码序列以相对于表面的明确定义的距离和方向排列,从而对转录施加方向性。与稀相 DNA 溶液相比,表面的独特之处在于,反应早期会减慢,随着 DNA 密度的增加而受到抑制,有利于面向表面的启动子,并且对 DNA 凝聚具有鲁棒性。我们解释这些结果表明,大分子(RNA 聚合酶和 RNA)而不是溶质(离子和核苷酸)在固定化 DNA 和储液器之间进行分区。在没有任何物理障碍的情况下,非平衡定向 DNA 交易形成了定义隔室的大分子梯度,从而为组装合成细胞提供了一种无边界的方法。