Saqi Mansoor, Dobson Richard J B, Kraben Preben, Hodgson David A, Wild David L
Barts and The London School of Medicine, Queen Mary, University of London, UK.
J Integr Bioinform. 2009 Jul 5;6(1):107. doi: 10.2390/biecoll-jib-2009-107.
Metabolic models have the potential to impact on genome annotation and on the interpretation of gene expression and other high throughput genome data. The genome of Streptomyces coelicolor genome has been sequenced and some 30% of the open reading frames (ORFs) lack any functional annotation. A recently constructed metabolic network model for S. coelicolor highlights biochemical functions which should exist to make the metabolic model complete and consistent. These include 205 reactions for which no ORF is associated. Here we combine protein functional predictions for the unannotated open reading frames in the genome with 'missing but expected' functions inferred from the metabolic model. The approach allows function predictions to be evaluated in the context of the biochemical pathway reconstruction, and feed back iteratively into the metabolic model. We describe the approach and discuss a few illustrative examples.
代谢模型有可能影响基因组注释以及基因表达和其他高通量基因组数据的解读。天蓝色链霉菌的基因组已被测序,约30%的开放阅读框(ORF)缺乏任何功能注释。最近构建的天蓝色链霉菌代谢网络模型突出了那些为使代谢模型完整和一致而应存在的生化功能。其中包括205个无ORF与之关联的反应。在此,我们将基因组中未注释开放阅读框的蛋白质功能预测与从代谢模型推断出的“缺失但预期”的功能相结合。该方法允许在生化途径重建的背景下评估功能预测,并迭代反馈到代谢模型中。我们描述了该方法并讨论了一些示例。