Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, USA.
J Am Chem Soc. 2010 Mar 3;132(8):2832-8. doi: 10.1021/ja9101776.
We report a structural study on the membrane binding of ovispirin using 2D IR line shape analysis, isotope labeling, and molecular dynamics simulations. Ovispirin is an antibiotic polypeptide that binds to the surfaces of membranes as an alpha-helix. By resolving individual backbone vibrational modes (amide I) using 1-(13)C=(18)O labeling, we measured the 2D IR line shapes for 15 of the 18 residues in this peptide. A comparison of the line shapes reveals an oscillation in the inhomogeneous line width that has a period equal to that of an alpha-helix (3.6 amino acids). The periodic trend is caused by the asymmetric environment of the membrane bilayer that exposes one face of the alpha-helix to much stronger environmental electrostatic forces than the other. We compare our experimental results to 2D IR line shapes calculated using the lowest free energy structure identified from molecular dynamics simulations. These simulations predict a periodic trend similar to the experiment and lead us to conclude that ovispirin lies in the membrane just below the headgroups, is tilted, and may be kinked. Besides providing insight into the antibiotic mechanism of ovispirin, our procedure provides an infrared method for studying peptide and protein structures that relies on the natural vibrational modes of the backbone. It is a complementary method to other techniques that utilize line shapes, such as fluorescence, NMR, and ESR spectroscopies, because it does not require mutations, the spectra can be quantitatively simulated using molecular dynamics, and the technique can be applied to difficult-to-study systems like ion channels, aggregated proteins, and kinetically evolving systems.
我们使用 2D IR 线谱分析、同位素标记和分子动力学模拟研究了ovisprin 与膜的结合结构。ovisprin 是一种抗生素多肽,以α-螺旋的形式结合在膜的表面。通过使用 1-(13)C=(18)O 标记解析该肽的 18 个残基中的 15 个的单个骨架振动模式(酰胺 I),我们测量了该肽的 2D IR 线谱。对线谱的比较揭示了不均匀线宽的振荡,其周期等于α-螺旋的周期(3.6 个氨基酸)。这种周期性趋势是由膜双层的不对称环境引起的,该环境使α-螺旋的一个面暴露于比另一个面强得多的环境静电力。我们将实验结果与使用分子动力学模拟确定的最低自由能结构计算的 2D IR 线谱进行了比较。这些模拟预测了与实验相似的周期性趋势,并使我们得出结论,ovisprin 位于头部基团下方的膜中,倾斜并可能发生扭曲。除了深入了解 ovisprin 的抗生素机制外,我们的程序还提供了一种研究肽和蛋白质结构的红外方法,该方法依赖于骨架的自然振动模式。它是一种互补的技术,可与其他技术(例如荧光、NMR 和 ESR 光谱学)一起使用,因为它不需要突变,光谱可以使用分子动力学进行定量模拟,并且该技术可以应用于难以研究的系统,如离子通道、聚集蛋白和动力学演变系统。