Suppr超能文献

声道弯曲和声腔生成的舌位轮廓对基频的影响。

Effects of a curved vocal tract with grid-generated tongue profile on low-order formants.

机构信息

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA.

出版信息

J Acoust Soc Am. 2010 Feb;127(2):1002-13. doi: 10.1121/1.3277214.

Abstract

A hyperbolic grid-generation algorithm allows investigation of the effect of vocal-tract curvature on low-order formants. A smooth two-dimensional (2D) curve represents the combined lower lip, tongue, and anterior pharyngeal wall profile as displacements from the combined upper lip, palate, and posterior pharyngeal wall outline. The algorithm is able to generate tongue displacements beyond the local radius of strongly curved sections of the palate. The 2D grid, along with transverse profiles of the lip, oral-pharyngeal, and epilarynx regions, specifies a vocal conduit from which an effective area function may be determined using corrections to acoustic parameters resulting from duct curvature; the effective area function in turn determines formant frequencies through an acoustic transmission-line calculation. Results of the corrected transmission line are compared with a three-dimensional finite element model. The observed effects of the curved vocal tract on formants F1 and F2 are in order of importance, as follows: (1) reduction in midline distances owing to curvature of the palate and the bend joining the palate to the pharynx, (2) the curvature correction to areas and section lengths, and (3) adjustments to the palate-tongue distance required to produce smooth tongue shapes at large displacements from the palate.

摘要

双曲网格生成算法可用于研究声道曲率对低阶共振峰的影响。一条平滑的二维(2D)曲线表示下唇、舌和咽前壁轮廓相对于上唇、硬腭和咽后壁轮廓的综合位移。该算法能够生成超出腭部强弯曲段局部半径的舌部位移。二维网格以及唇、口咽和会厌区域的横向轮廓指定了一个声道,从中可以使用声道曲率引起的声学参数校正来确定有效面积函数;有效面积函数反过来通过声传输线计算来确定共振峰频率。校正后的传输线的结果与三维有限元模型进行了比较。弯曲声道对共振峰 F1 和 F2 的影响大小依次为:(1)由于硬腭和连接硬腭与咽的弯曲部分的曲率导致的中线距离减小;(2)面积和截面长度的曲率校正;以及(3)为了在远离硬腭的大位移处产生平滑的舌形,对上颚和舌头之间的距离进行调整。

相似文献

1
Effects of a curved vocal tract with grid-generated tongue profile on low-order formants.
J Acoust Soc Am. 2010 Feb;127(2):1002-13. doi: 10.1121/1.3277214.
2
Vowel category dependence of the relationship between palate height, tongue height, and oral area.
J Speech Lang Hear Res. 2003 Jun;46(3):738-53. doi: 10.1044/1092-4388(2003/059).
3
Three Professional Singers' Vocal Tract Dimensions in Operatic Singing, Kulning, and Edge-A Multiple Case Study Examining Loud Singing.
J Voice. 2024 Sep;38(5):1253.e11-1253.e27. doi: 10.1016/j.jvoice.2022.01.024. Epub 2022 Mar 8.
4
On the relationship between palate shape and articulatory behavior.
J Acoust Soc Am. 2009 Jun;125(6):3936-49. doi: 10.1121/1.3125313.
7
A radiological assessment of the oropharynx with special reference to tomography.
Clin Radiol. 1970 Oct;21(4):407-14. doi: 10.1016/s0009-9260(70)80083-6.
8
Generating vocal tract shapes from formant frequencies.
J Acoust Soc Am. 1978 Oct;64(4):1027-35. doi: 10.1121/1.382086.
9
Modeling the effect of palate shape on the articulatory-acoustics mapping.
J Acoust Soc Am. 2018 Jul;144(1):EL71. doi: 10.1121/1.5048043.

引用本文的文献

本文引用的文献

2
Development of vocal tract length during early childhood: a magnetic resonance imaging study.
J Acoust Soc Am. 2005 Jan;117(1):338-50. doi: 10.1121/1.1835958.
5
Acoustic characteristics of the piriform fossa in models and humans.
J Acoust Soc Am. 1997 Jan;101(1):456-65. doi: 10.1121/1.417990.
6
Vocal tract area functions from magnetic resonance imaging.
J Acoust Soc Am. 1996 Jul;100(1):537-54. doi: 10.1121/1.415960.
7
Resonances of a bent vocal tract.
J Acoust Soc Am. 1986 Apr;79(4):1113-6. doi: 10.1121/1.393383.
8
Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels.
J Acoust Soc Am. 1991 Aug;90(2 Pt 1):799-828. doi: 10.1121/1.401949.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验