University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, Fife KY16 9ST, UK.
Chemistry. 2010 Mar 15;16(11):3441-58. doi: 10.1002/chem.200902356.
The present computational mechanistic study explores comprehensively the organoactinide-mediated intramolecular hydroamination/cyclisation (IHC) of aminodienes by employing a reliable DFT method. All the steps of a plausible catalytic reaction course have been scrutinised for the IHC of (4E,6)-heptadienylamine 1t by [(CGC)Th(NMe(2))(2)] precatalyst 2 (CGC=Me(2)Si(eta(5)-Me(4)C(5))(tBuN)). For each of the relevant elementary steps the most accessible pathway has been identified from a multitude of mechanistic possibilities. The operative mechanism involves rapid substrate association/dissociation equilibria for the 3t-S resting state and also for azacyclic intermediates 4a, 4s, easily accessible and reversible exocyclic ring closure, supposedly facile isomerisation of the azacycle's butenyl tether prior to turnover-limiting protonolysis. The following aspects are in support of this scenario: 1) the derived rate law is consistent with the experimentally obtained empirical rate law; 2) the accessed barrier for turnover-limiting protonolysis does agree remarkably well with observed performance data; 3) the ring-tether double-bond selectivity is consistently elucidated, which led to predict the product distribution correctly. This study provides a computationally substantiated rationale for observed activity and selectivity data. Steric demands at the CGC framework appear to be an efficient means for modulating both performance and ring-tether double-bond selectivity. The careful comparison of (CGC)4f-element and (CGC)5f-element catalysts revealed that aminodiene IHC mediated by organoactinides and organolanthanides proceeds through a similar mechanistic scenario. However, cyclisation and protonolysis steps, in particular, feature a markedly different reactivity pattern for the two catalyst classes, owing to enhanced bond covalency of early actinides when compared to lanthanides.
本计算力学研究采用可靠的 DFT 方法,全面探讨了有机锕系元素介导的氨基二烯的分子内氨化/环化(IHC)。对于 [(CGC)Th(NMe(2))(2)] 前催化剂 2(CGC=[Me(2)Si(eta(5)-Me(4)C(5))(tBuN)](2-)介导的(4E,6)-庚二烯基胺 1t 的 IHC,我们研究了所有可能的催化反应途径的相关步骤。对于每一个相关的基本步骤,我们都从多种可能的机制中确定了最容易接近的途径。作用机制包括 3t-S 基态的快速底物缔合/解离平衡,以及易于获得和可逆的外环环化,推测在周转限制的质子化之前,氮杂环的丁烯键易于异构化。以下方面支持了这一方案:1)推导出的速率定律与实验获得的经验速率定律一致;2)访问的周转限制质子化的势垒与观察到的性能数据非常吻合;3)阐明了环键双键的选择性,这导致正确预测了产物分布。本研究为观察到的活性和选择性数据提供了计算依据。CGC 框架的空间需求似乎是调节性能和环键双键选择性的有效手段。仔细比较 (CGC)4 族和 (CGC)5 族元素催化剂表明,有机锕系元素和有机镧系元素介导的氨基二烯 IHC 通过类似的力学方案进行。然而,特别是对于两种催化剂类别,环化和质子化步骤的反应性模式明显不同,这是由于早期锕系元素的键共价性增强,与镧系元素相比。