Suppr超能文献

玉米(Zea mays L.)叶片面积的无损测量

Non-destructive leaf area measurement in maize (Zea mays L.).

作者信息

Sezer Ismail, Oner Fatih, Mut Zeki

机构信息

Department of Agronomy, Faculty of Agriculture, Ondokuz Mayis University, 55139 Samsun, Turkey.

出版信息

J Environ Biol. 2009 Sep;30(5 Suppl):785-90.

Abstract

In this research, leaf area prediction model was developed for some leaf-used maize (Zea mays L.) cultivars namely Coluna, Luce, Maveric, Ranchero, TTM-813, Zamora and RX-788 grown in Black Sea region of Turkey. Lamina width, length and leaf area were measured without destroying the leaf to develop the models. The actual leaf areas of the plants were measured by PLACOM Digital Planimeter and multiple regression analysis with Excel 2003 computer package program was performed for the plants separately. The produced leaf area prediction models in the present study were formulized as LA = a - (b x W2) + [c x (W x L)] where LA is leaf area, W is leaf width, L is leaf length and a, b, c are coefficiencies. R2 values for maize cultivars tested varied with species from 0.95 in Luce to 0.98 in Maveric. All R2 values and standard errors were found to be significant at the p < 0.001 level.

摘要

在本研究中,针对种植于土耳其黑海地区的一些叶用玉米品种,即科卢纳、卢斯、马弗里克、兰切罗、TTM - 813、萨莫拉和RX - 788,开发了叶面积预测模型。在不破坏叶片的情况下测量叶片宽度、长度和叶面积以建立模型。通过PLACOM数字面积仪测量植株的实际叶面积,并分别使用Excel 2003计算机软件包程序对植株进行多元回归分析。本研究中生成的叶面积预测模型公式为LA = a - (b x W2) + [c x (W x L)],其中LA为叶面积,W为叶宽,L为叶长,a、b、c为系数。所测试玉米品种的R2值因品种而异,从卢斯的0.95到马弗里克的0.98。所有R2值和标准误差在p < 0.001水平上均具有显著性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验