Poirier Frédéric J A M, Wilson Hugh R
Laboratoire de Psychophysique et Perception Visuelle, Université de Montréal, Canada.
J Vis. 2010 Jan 19;10(1):9.1-16. doi: 10.1167/10.1.9.
Symmetry is usually computationally expensive to encode reliably, and yet it is relatively effortless to perceive. Here, we extend F. J. A. M. Poirier and H. R. Wilson's (2006) model for shape perception to account for H. R. Wilson and F. Wilkinson's (2002) data on shape symmetry. Because the model already accounts for shape perception, only minimal neural circuitry is required to enable it to encode shape symmetry as well. The model is composed of three main parts: (1) recovery of object position using large-scale non-Fourier V4-like concentric units that respond at the center of concentric contour segments across orientations, (2) around that recovered object center, curvature mechanisms combine multiplicatively the responses of oriented filters to encode object-centric local shape information, with a preference for convexities, and (3) object-centric symmetry mechanisms. Model and human performances are comparable for symmetry perception of shapes. Moreover, with some improvement of edge recovery, the model can encode symmetry axes in natural images such as faces.
通常情况下,可靠地编码对称性在计算上成本高昂,但人类却能相对轻松地感知它。在此,我们扩展了F. J. A. M. 波里尔和H. R. 威尔逊(2006年)的形状感知模型,以解释H. R. 威尔逊和F. 威尔金森(2002年)关于形状对称性的数据。由于该模型已经能够解释形状感知,因此只需最少的神经回路就能使其也能编码形状对称性。该模型由三个主要部分组成:(1)使用大规模非傅里叶V4样同心单元恢复物体位置,这些单元在不同方向的同心轮廓段中心做出响应;(2)在恢复的物体中心周围,曲率机制将定向滤波器的响应进行乘法组合,以编码以物体为中心的局部形状信息,偏好凸性;(3)以物体为中心的对称机制。该模型与人类在形状对称性感知方面的表现相当。此外,通过对边缘恢复进行一些改进,该模型能够编码自然图像(如人脸)中的对称轴。