Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg.
Biopolymers. 2010 Jul;93(7):595-606. doi: 10.1002/bip.21404.
The bacterial signal recognition particle (SRP) receptor FtsY forms a complex with the SRP Ffh to target nascent polypeptide chains to the bacterial inner membrane. How FtsY interacts with lipids and associates to the membrane is unclear. Here, we show that vesicle binding leads to partial protection against proteolytic degradation and a change in secondary structure, which differs depending on whether the lipids are simple mixtures of zwitterionic and anionic lipids, mimics of Escherichia coli lipids, or lysolipids. Lipid binding alters the stability of FtsY. Thermal unfolding of FtsY in buffer shows two transitions, one occurring at approximately 60 degrees C and the other at approximately 90 degrees C. The thermal intermediate accumulating between 60 and 90 degrees C has structural features in common with the state induced by binding to E. coli lipids. E. coli lipid extract induces a single transition around 70 degrees C, anionic lipids have no effect while cooperative unfolding is completely removed in lysolipids. Thus, the lipid environment profoundly influences the dynamic properties of FtsY, leading to three different kinds of FtsY-lipid interactions with different effects on structure, proteolytic protection, and stability, and is driven both by hydrophobic and electrostatic interactions. Trypsin digestion experiments highlight the central role of the N-domain in lipid contacts, whereas the A- and G-domains appear to play a more minor part.
细菌信号识别颗粒(SRP)受体 FtsY 与 SRP Ffh 形成复合物,将新生多肽链靶向细菌内膜。FtsY 如何与脂质相互作用并与膜结合尚不清楚。在这里,我们表明囊泡结合导致对蛋白水解降解的部分保护和二级结构的变化,这取决于脂质是两性离子和阴离子脂质的简单混合物、大肠杆菌脂质的模拟物还是溶血磷脂。脂质结合改变了 FtsY 的稳定性。缓冲液中 FtsY 的热变性显示出两个转变,一个在大约 60°C 左右发生,另一个在大约 90°C 左右发生。在 60 和 90°C 之间积累的热中间体与结合大肠杆菌脂质诱导的状态具有共同的结构特征。大肠杆菌脂质提取物在大约 70°C 左右诱导单一转变,阴离子脂质没有影响,而溶血磷脂则完全消除了协同展开。因此,脂质环境深刻地影响了 FtsY 的动态特性,导致三种不同类型的 FtsY-脂质相互作用,对结构、蛋白水解保护和稳定性有不同的影响,并且由疏水性和静电相互作用驱动。胰蛋白酶消化实验突出了 N 结构域在脂质接触中的核心作用,而 A 和 G 结构域似乎只起次要作用。