Suppr超能文献

采用压痕技术测量鼓膜的准静态杨氏模量。

Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.

机构信息

Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ont, Canada.

出版信息

Hear Res. 2010 May;263(1-2):168-76. doi: 10.1016/j.heares.2010.02.005. Epub 2010 Feb 8.

Abstract

Accurate estimation of the quasi-static Young's modulus of the eardrum is important for finite-element modeling. In this study, we adapted a tissue indentation technique and inverse finite-element analysis to estimate the Young's modulus of the eardrum. A custom-built indentation apparatus was used to perform indentation testing on seven rat eardrums in situ after immobilizing the malleus. Testing was done in most cases on the posterior pars tensa. The unloaded shape of each eardrum was measured and used to construct finite-element models with subject-specific geometries to simulate the indentation experiment. The Young's modulus of each specimen was then estimated by numerically optimizing the Young's modulus of each model so that simulation results matched corresponding experimental data. Using an estimated value of 12 microm for the thickness of each model eardrum, the estimated average Young's modulus for the pars tensa was found to be 21.7+/-1.2 MPa. The estimated average Young's modulus is within the range reported in some of the literature. The estimation technique is sensitive to the thickness of the pars tensa used in the model but is not sensitive to relatively large variations in the stiffness of the pars flaccida and manubrium or to the pars tensa/pars flaccida separation conditions.

摘要

准确估计鼓膜的准静态杨氏模量对于有限元建模非常重要。在这项研究中,我们采用了组织压痕技术和逆有限元分析来估计鼓膜的杨氏模量。使用定制的压痕装置在固定锤骨后原位对 7 个大鼠鼓膜进行压痕测试。大多数情况下,在后紧张部进行测试。测量每个鼓膜的无载形状,并使用具有特定于受试者的几何形状的有限元模型来模拟压痕实验。然后,通过数值优化每个模型的杨氏模量来估计每个标本的杨氏模量,以使模拟结果与相应的实验数据相匹配。使用每个模型鼓膜厚度的估计值 12 微米,估计出的紧张部平均杨氏模量为 21.7+/-1.2 MPa。估计的平均杨氏模量在一些文献报道的范围内。该估计技术对模型中使用的紧张部厚度敏感,但对紧张部和松弛部以及锤骨柄的刚度的较大变化不敏感,也不受紧张部/松弛部分离条件的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验