Roux Kenneth H
Cold Spring Harb Protoc. 2009 Apr;2009(4):pdb.ip66. doi: 10.1101/pdb.ip66.
The use of polymerase chain reaction (PCR) to generate large amounts of a desired product can be a double-edged sword. Failure to amplify under optimum conditions can lead to the generation of multiple undefined and unwanted products, even to the exclusion of the desired product. At the other extreme, no product may be produced. A typical response at this point is to vary one or more of the many parameters that are known to contribute to primer-template fidelity and primer extension. High on the list of optimization variables are Mg(++) concentrations, buffer pH, and cycling conditions. With regard to the last, the annealing temperature is most important. The situation is further complicated by the fact that some of the variables are quite interdependent. For example, because dNTPs directly chelate a proportional number of Mg(++) ions, an increase in the concentration of dNTPs decreases the concentration of free Mg(++) available to influence polymerase function. This article discusses various optimization strategies, including touchdown PCR and hot-start PCR.
使用聚合酶链反应(PCR)来大量生成所需产物可能是一把双刃剑。在非最佳条件下未能扩增可能导致产生多种未明确且不需要的产物,甚至可能排除所需产物。在另一个极端情况下,可能根本不产生任何产物。此时典型的应对方法是改变众多已知有助于引物 - 模板保真度和引物延伸的参数中的一个或多个。优化变量列表中排在前列的是镁离子(Mg(++))浓度、缓冲液pH值和循环条件。关于最后一点,退火温度最为重要。由于一些变量相互之间存在很强的依赖性,情况变得更加复杂。例如,因为脱氧核苷三磷酸(dNTPs)直接螯合一定比例的镁离子,dNTPs浓度的增加会降低可用于影响聚合酶功能的游离镁离子(Mg(++))的浓度。本文讨论了各种优化策略,包括降落PCR和热启动PCR。