Suppr超能文献

狨猴听觉皮层中周期性的神经编码

Neural coding of periodicity in marmoset auditory cortex.

作者信息

Bendor Daniel, Wang Xiaoqin

机构信息

Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Bldg. 46, Rm. 5233, 43 Vassar St., Cambridge, MA, USA.

出版信息

J Neurophysiol. 2010 Apr;103(4):1809-22. doi: 10.1152/jn.00281.2009. Epub 2010 Feb 10.

Abstract

Pitch, our perception of how high or low a sound is on a musical scale, crucially depends on a sound's periodicity. If an acoustic signal is temporally jittered so that it becomes aperiodic, the pitch will no longer be perceivable even though other acoustical features that normally covary with pitch are unchanged. Previous electrophysiological studies investigating pitch have typically used only periodic acoustic stimuli, and as such these studies cannot distinguish between a neural representation of pitch and an acoustical feature that only correlates with pitch. In this report, we examine in the auditory cortex of awake marmoset monkeys (Callithrix jacchus) the neural coding of a periodicity's repetition rate, an acoustic feature that covaries with pitch. We first examine if individual neurons show similar repetition rate tuning for different periodic acoustic signals. We next measure how sensitive these neural representations are to the temporal regularity of the acoustic signal. We find that neurons throughout auditory cortex covary their firing rate with the repetition rate of an acoustic signal. However, similar repetition rate tuning across acoustic stimuli and sensitivity to temporal regularity were generally only observed in a small group of neurons found near the anterolateral border of primary auditory cortex, the location of a previously identified putative pitch processing center. These results suggest that although the encoding of repetition rate is a general component of auditory cortical processing, the neural correlate of periodicity is confined to a special class of pitch-selective neurons within the putative pitch processing center of auditory cortex.

摘要

音高,即我们对音乐音阶上声音高低的感知,关键取决于声音的周期性。如果一个声学信号在时间上抖动,从而变得非周期性,那么即使其他通常与音高共同变化的声学特征不变,音高也将不再可感知。以往研究音高的电生理研究通常仅使用周期性声学刺激,因此这些研究无法区分音高的神经表征和仅与音高相关的声学特征。在本报告中,我们在清醒的狨猴(绢毛猴)听觉皮层中研究了周期性重复率的神经编码,周期性重复率是一种与音高共同变化的声学特征。我们首先研究单个神经元对不同周期性声学信号是否表现出相似的重复率调谐。接下来,我们测量这些神经表征对声学信号时间规律性的敏感程度。我们发现,整个听觉皮层中的神经元其放电率与声学信号的重复率共同变化。然而,通常仅在初级听觉皮层前外侧边界附近发现的一小群神经元中观察到跨声学刺激的相似重复率调谐以及对时间规律性的敏感性,该位置是先前确定的假定音高处理中心。这些结果表明,尽管重复率编码是听觉皮层处理的一个普遍组成部分,但周期性的神经相关物局限于听觉皮层假定音高处理中心内一类特殊的音高选择性神经元。

相似文献

1
Neural coding of periodicity in marmoset auditory cortex.
J Neurophysiol. 2010 Apr;103(4):1809-22. doi: 10.1152/jn.00281.2009. Epub 2010 Feb 10.
2
On pitch, the ear and the brain of the beholder. Focus on "neural coding of periodicity in marmoset auditory cortex.".
J Neurophysiol. 2010 Apr;103(4):1708-11. doi: 10.1152/jn.00182.2010. Epub 2010 Feb 17.
3
The neuronal representation of pitch in primate auditory cortex.
Nature. 2005 Aug 25;436(7054):1161-5. doi: 10.1038/nature03867.
4
Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets ().
J Neurosci. 2017 Jul 19;37(29):7008-7022. doi: 10.1523/JNEUROSCI.0093-17.2017. Epub 2017 Jun 20.
5
Dual-pitch processing mechanisms in primate auditory cortex.
J Neurosci. 2012 Nov 14;32(46):16149-61. doi: 10.1523/JNEUROSCI.2563-12.2012.
6
Cortical encoding of pitch: recent results and open questions.
Hear Res. 2011 Jan;271(1-2):74-87. doi: 10.1016/j.heares.2010.04.015. Epub 2010 May 10.
7
Distributed representation of vocalization pitch in marmoset primary auditory cortex.
Eur J Neurosci. 2019 Jan;49(2):179-198. doi: 10.1111/ejn.14204. Epub 2018 Nov 2.
8
Differential neural coding of acoustic flutter within primate auditory cortex.
Nat Neurosci. 2007 Jun;10(6):763-71. doi: 10.1038/nn1888. Epub 2007 Apr 29.
9
Periodicity and frequency coding in human auditory cortex.
Eur J Neurosci. 2006 Dec;24(12):3601-10. doi: 10.1111/j.1460-9568.2006.05240.x.

引用本文的文献

1
The auditory P2 is influenced by pitch changes but not pitch strength and consists of two separate subcomponents.
Imaging Neurosci (Camb). 2024 May 9;2. doi: 10.1162/imag_a_00160. eCollection 2024.
2
Precise spike-timing information in the brainstem is well aligned with the needs of communication and the perception of environmental sounds.
PLoS Biol. 2025 Jun 16;23(6):e3003213. doi: 10.1371/journal.pbio.3003213. eCollection 2025 Jun.
3
Cortical processing of discrete prosodic patterns in continuous speech.
Nat Commun. 2025 Mar 3;16(1):1947. doi: 10.1038/s41467-025-56779-w.
4
Preliminary Evidence for Global Properties in Human Listeners During Natural Auditory Scene Perception.
Open Mind (Camb). 2024 Mar 26;8:333-365. doi: 10.1162/opmi_a_00131. eCollection 2024.
6
Parallel and distributed encoding of speech across human auditory cortex.
Cell. 2021 Sep 2;184(18):4626-4639.e13. doi: 10.1016/j.cell.2021.07.019. Epub 2021 Aug 18.
7
Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits.
J Assoc Res Otolaryngol. 2021 Jun;22(3):319-347. doi: 10.1007/s10162-021-00792-5. Epub 2021 Apr 23.
9
Effects of Ketamine Administration on Auditory Information Processing in the Neocortex of Nonhuman Primates.
Front Psychiatry. 2020 Aug 19;11:826. doi: 10.3389/fpsyt.2020.00826. eCollection 2020.

本文引用的文献

1
Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9471-6. doi: 10.1073/pnas.0904066106. Epub 2009 May 20.
2
Interdependent encoding of pitch, timbre, and spatial location in auditory cortex.
J Neurosci. 2009 Feb 18;29(7):2064-75. doi: 10.1523/JNEUROSCI.4755-08.2009.
4
Neural coding of temporal information in auditory thalamus and cortex.
Neuroscience. 2008 Nov 19;157(2):484-94. doi: 10.1016/j.neuroscience.2008.07.050.
5
Perception and cortical neural coding of harmonic fusion in ferrets.
J Acoust Soc Am. 2008 May;123(5):2701-16. doi: 10.1121/1.2902178.
6
Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys.
J Neurophysiol. 2008 Aug;100(2):888-906. doi: 10.1152/jn.00884.2007. Epub 2008 Jun 4.
8
Dynamic amplitude coding in the auditory cortex of awake rhesus macaques.
J Neurophysiol. 2007 Sep;98(3):1451-74. doi: 10.1152/jn.01203.2006. Epub 2007 Jul 5.
9
Differential neural coding of acoustic flutter within primate auditory cortex.
Nat Neurosci. 2007 Jun;10(6):763-71. doi: 10.1038/nn1888. Epub 2007 Apr 29.
10
Anesthesia suppresses nonsynchronous responses to repetitive broadband stimuli.
Neuroscience. 2007 Mar 2;145(1):357-69. doi: 10.1016/j.neuroscience.2006.11.043. Epub 2007 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验