Institute of Dental Research, Stomatological College, Nanjing Medical University, Nanjing, Jiangsu 210029, P R of China.
Development. 2010 Mar;137(6):985-92. doi: 10.1242/dev.045898. Epub 2010 Feb 11.
To determine whether the calcium-sensing receptor (CaR) participates in tooth formation and dental alveolar bone development in mandibles in vivo, we examined these processes, as well as mineralization, in 2-week-old CaR-knockout (CaR(-/-)) mice. We also attempted to rescue the phenotype of CaR(-/-) mice by genetic means, in mice doubly homozygous for CaR and 25-hydroxyvitamin D 1alpha-hydroxylase [1alpha(OH)ase] or parathyroid hormone (Pth). In CaR(-/-) mice, which exhibited hypercalcemia, hypophosphatemia and increased serum PTH, the volumes of teeth and of dental alveolar bone were decreased dramatically, whereas the ratio of the area of predentin to total dentin and the number and surface of osteoblasts in dental alveolar bone were increased significantly, as compared with wild-type littermates. The normocalcemia present in CaR(-/-);1alpha(OH)ase(-/-) mice only slightly improved the defects in dental and alveolar bone formation observed in the hypercalcemic CaR(-/-) mice. However, these defects were completely rescued by the additional elimination of hypophosphatemia and by an increase in parathyroid hormone-related protein (PTHrP) expression in the apical pulp, Hertwig's epithelial root sheath and mandibular tissue in CaR(-/-); Pth(-/-) mice. Therefore, alterations in calcium, phosphorus and PTHrP contribute to defects in the formation of teeth and alveolar bone in CaR-deficient mice. This study indicates that CaR participates in the formation of teeth and in the development of dental alveolar bone in mandibles in vivo, although it appears to do so largely indirectly.
为了确定钙敏感受体(CaR)是否参与体内下颌牙齿形成和牙槽骨发育,我们研究了这些过程以及 2 周龄 CaR 敲除(CaR(-/-))小鼠的矿化作用。我们还试图通过基因手段挽救 CaR(-/-) 小鼠的表型,在 CaR 和 25-羟维生素 D1α-羟化酶[1α(OH)ase]或甲状旁腺激素(Pth)双重纯合的小鼠中。在表现为高钙血症、低磷酸盐血症和血清 PTH 增加的 CaR(-/-) 小鼠中,牙齿和牙槽骨体积显著减小,而牙本质前体面积与总牙本质的比例以及牙槽骨中成骨细胞的数量和表面显著增加,与野生型同窝仔鼠相比。在 CaR(-/-);1α(OH)ase(-/-) 小鼠中出现的正常钙血症仅略微改善了在高钙血症 CaR(-/-) 小鼠中观察到的牙齿和牙槽骨形成缺陷。然而,通过消除低磷酸盐血症和增加根尖牙髓、赫特维希氏上皮根鞘和下颌组织中甲状旁腺激素相关蛋白(PTHrP)的表达,CaR(-/-);Pth(-/-) 小鼠中的这些缺陷完全得到挽救。因此,钙、磷和 PTHrP 的改变导致 CaR 缺乏小鼠牙齿和牙槽骨形成缺陷。这项研究表明,CaR 参与体内下颌牙齿形成和牙槽骨发育,尽管它似乎主要是间接参与的。