Borland Colin D R, Dunningham Helen, Bottrill Fiona, Vuylsteke Alain, Yilmaz Cuneyt, Dane D Merrill, Hsia Connie C W
Department of Medicine, Hinchingbrooke Hospital, Huntingdon PE29 6NT, UK.
J Appl Physiol (1985). 2010 May;108(5):1052-60. doi: 10.1152/japplphysiol.00904.2009. Epub 2010 Feb 11.
Lung diffusing capacity for nitric oxide (DLNO) is used to measure alveolar membrane conductance (DMNO), but disagreement remains as to whether DMNO=DLNO, and whether blood conductance (thetaNO)=infinity. Our previous in vitro and in vivo studies suggested that thetaNO<infinity. We now show in a membrane oxygenator model perfused with whole blood that addition of a cell-free bovine hemoglobin (Hb) glutamer-200 solution increased diffusing capacity of the circuit (D) for NO (DNO) by 39%, D for carbon monoxide (DCO) by 24%, and the ratio of DNO to DCO by 12% (all P<0.001). In three anesthetized dogs, DLNO and DLCO were measured by a rebreathing technique before and after three successive equal volume-exchange transfusions with bovine Hb glutamer-200 (10 ml/kg each, total exchange 30 ml/kg). At baseline, DLNO/DLCO=4.5. After exchange transfusion, DLNO rose 57+/-16% (mean+/-SD, P=0.02) and DLNO/DLCO=7.1, whereas DLCO remained unchanged. Thus, in vitro and in vivo data directly demonstrate a finite thetaNO. We conclude that the erythrocyte and/or its immediate environment imposes considerable resistance to alveolar-capillary NO uptake. DLNO is sensitive to dynamic hematological factors and is not a pure index of conductance of the alveolar tissue membrane. With successive exchange transfusion, the estimated in vivo thetaNO [5.1 ml NO.(ml blood.min.Torr)(-1)] approached 4.5 ml NO.(ml blood.min.Torr)(-1), which was derived from in vitro measurements by Carlsen and Comroe (J Gen Physiol 42: 83-107, 1958). Therefore, we suggest use of thetaNO=4.5 ml NO.(min.Torr.ml blood)(-1) for calculation of DM(NO) and pulmonary capillary blood volume from DLNO and DLCO.
肺一氧化氮弥散能力(DLNO)用于测量肺泡膜传导率(DMNO),但关于DMNO是否等于DLNO以及血液传导率(θNO)是否为无穷大仍存在分歧。我们之前的体外和体内研究表明θNO<无穷大。我们现在在一个用全血灌注的膜式氧合器模型中表明,添加无细胞牛血红蛋白(Hb)谷氨酰胺-200溶液可使回路对一氧化氮(DNO)的弥散能力(D)增加39%,对一氧化碳(DCO)的弥散能力增加24%,且DNO与DCO的比值增加12%(所有P<0.001)。在三只麻醉犬中,通过重复呼吸技术在连续三次等量交换输注牛血红蛋白谷氨酰胺-200(每次10 ml/kg,总交换量30 ml/kg)前后测量DLNO和DLCO。基线时,DLNO/DLCO = 4.5。交换输血后,DLNO升高57±16%(平均值±标准差,P = 0.02),DLNO/DLCO = 7.1,而DLCO保持不变。因此,体外和体内数据直接证明了θNO是有限的。我们得出结论,红细胞和/或其紧邻环境对肺泡-毛细血管一氧化氮摄取施加了相当大的阻力。DLNO对动态血液学因素敏感,不是肺泡组织膜传导率的纯指标。随着连续交换输血,体内估计的θNO [5.1 ml NO·(ml血液·min·Torr)-1]接近4.5 ml NO·(ml血液·min·Torr)-1,这是卡尔森和康罗伊通过体外测量得出的(《普通生理学杂志》42: 83 - 107, 1958)。因此,我们建议使用θNO = 4.5 ml NO·(min·Torr·ml血液)-1从DLNO和DLCO计算DM(NO)和肺毛细血管血容量。