William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
J Chem Phys. 2010 Feb 14;132(6):064304. doi: 10.1063/1.3299273.
We have measured pressures p and temperatures T corresponding to the maximum nucleation rate of argon in a cryogenic supersonic nozzle apparatus where the estimated nucleation rates are J=10(17+/-1) cm(-3) s(-1). As T increases from 34 to 53 K, p increases from 0.47 to 8 kPa. Under these conditions, classical nucleation theory predicts nucleation rates of 11-13 orders of magnitude lower than the observed rates while mean field kinetic nucleation theory predicts the observed rates within 1 order of magnitude. The current data set appears consistent with the measurements of Iland et al. [J. Chem. Phys. 127, 154506 (2007)] in the cryogenic nucleation pulse chamber. Combining the two data sets suggests that classical nucleation theory fails because it overestimates both the critical cluster size and the excess internal energy of the critical clusters.
我们已经测量了在低温超音速喷嘴装置中氩的最大成核率所对应的压力 p 和温度 T,其中估计的成核率为 J=10(17+/-1) cm(-3) s(-1)。随着 T 从 34 K 增加到 53 K,p 从 0.47 kPa 增加到 8 kPa。在这些条件下,经典成核理论预测的成核率比观察到的成核率低 11-13 个数量级,而平均场动力学成核理论预测的成核率在 1 个数量级内。当前数据集似乎与 Iland 等人在低温成核脉冲室中的测量结果一致[J. Chem. Phys. 127, 154506 (2007)]。将这两个数据集结合起来表明,经典成核理论失败了,因为它高估了临界团簇的大小和临界团簇的过剩内能。