Suppr超能文献

对 SEARCH 模型预测根治性前列腺切除术后侵袭性复发的外部验证:来自杜克前列腺中心数据库的结果。

External validation of the SEARCH model for predicting aggressive recurrence after radical prostatectomy: results from the Duke Prostate Center Database.

机构信息

Duke Prostate Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

BJU Int. 2010 Sep;106(6):796-800. doi: 10.1111/j.1464-410X.2010.09214.x. Epub 2010 Feb 11.

Abstract

OBJECTIVE

To validate a model previously developed using the Shared Equal Access Regional Cancer Hospital (SEARCH) database to predict the risk of aggressive recurrence after surgery, defined as a prostate-specific antigen (PSA) doubling time (DT) of <9 months, incorporating pathological stage, preoperative PSA level and pathological Gleason sum, that had an area under the curve (AUC) of 0.79 using a cohort of men from the Duke Prostate Center (DPC).

PATIENTS AND METHODS

Data were included from 1989 men from the DPC database who underwent RP for node-negative prostate cancer between 1987 and 2003. Of these men, 100 had disease recurrence, with a PSADT of <9 months, while 1889 either did not have a recurrence but had > or =36 months of follow-up or had a recurrence with a PSADT of > or =9 months. We examined the ability of the SEARCH model to predict aggressive recurrence within the DPC cohort, and examined the correlation between the predicted risk of aggressive recurrence and the actual outcome within DPC.

RESULTS

The SEARCH model predicted aggressive recurrence within DPC with an AUC of 0.82. There was a strong and significant correlation between the predicted risk of aggressive recurrence based on the SEARCH tables and the actual outcomes within DPC (r= 0.68, P < 0.001), although the model predictions tended to be slightly higher than the actual risk.

CONCLUSIONS

The SEARCH model to predict aggressive recurrence after RP predicted aggressive recurrence in an external dataset with a high degree of accuracy. These tables, now validated, can be used to help select men for adjuvant therapy and clinical trials.

摘要

目的

验证先前使用共享均等访问区域癌症医院(SEARCH)数据库开发的模型,该模型用于预测手术后侵袭性复发的风险,定义为前列腺特异性抗原(PSA)倍增时间(DT)<9 个月,纳入了病理分期、术前 PSA 水平和病理 Gleason 总和,使用杜克前列腺中心(DPC)的男性队列,其曲线下面积(AUC)为 0.79。

患者和方法

纳入了 1987 年至 2003 年间在 DPC 数据库中接受 RP 治疗的 1989 名淋巴结阴性前列腺癌患者的数据。这些患者中有 100 例发生疾病复发,PSA DT <9 个月,而 1889 例未复发但随访时间>或=36 个月或复发 PSA DT >或=9 个月。我们检查了 SEARCH 模型在 DPC 队列中预测侵袭性复发的能力,并检查了预测的侵袭性复发风险与 DPC 中的实际结果之间的相关性。

结果

SEARCH 模型在 DPC 中预测侵袭性复发的 AUC 为 0.82。基于 SEARCH 表预测的侵袭性复发风险与 DPC 中的实际结果之间存在很强且显著的相关性(r=0.68,P<0.001),尽管模型预测值往往略高于实际风险。

结论

用于预测 RP 后侵袭性复发的 SEARCH 模型在外部数据集预测侵袭性复发的准确性很高。这些现在已经验证的表格可以用于帮助选择接受辅助治疗和临床试验的男性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验