Department of Drug and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno 13, I-16147 Genoa, Italy.
Talanta. 2010 Mar 15;80(5):1832-7. doi: 10.1016/j.talanta.2009.10.030. Epub 2009 Oct 24.
The possibility provided by Chemometrics to extract and combine (fusion) information contained in NIR and MIR spectra in order to discriminate monovarietal extra virgin olive oils according to olive cultivar (Casaliva, Leccino, Frantoio) has been investigated. Linear discriminant analysis (LDA) was applied as a classification technique on these multivariate and non-specific spectral data both separately and jointly (NIR and MIR data together). In order to ensure a more appropriate ratio between the number of objects (samples) and number of variables (absorbance at different wavenumbers), LDA was preceded either by feature selection or variable compression. For feature selection, the SELECT algorithm was used while a wavelet transform was applied for data compression. Correct classification rates obtained by cross-validation varied between 60% and 90% depending on the followed procedure. Most accurate results were obtained using the fused NIR and MIR data, with either feature selection or data compression. Chemometrical strategies applied to fused NIR and MIR spectra represent an effective method for classification of extra virgin olive oils on the basis of the olive cultivar.
化学计量学提供了一种可能性,可以提取和组合(融合)近红外(NIR)和中红外(MIR)光谱中包含的信息,以便根据橄榄品种(卡萨利瓦、莱希诺、佛伦蒂诺)对单品种特级初榨橄榄油进行区分。线性判别分析(LDA)被应用于这些多变量和非特异性光谱数据的分类技术,无论是单独使用还是联合使用(NIR 和 MIR 数据一起使用)。为了确保对象(样本)数量和变量(不同波数处的吸光度)之间的比例更合适,在进行 LDA 之前,可以进行特征选择或变量压缩。对于特征选择,使用了 SELECT 算法,而对于数据压缩,则应用了小波变换。根据所采用的方法,交叉验证得到的正确分类率在 60%到 90%之间变化。使用融合的近红外和中红外数据,无论是进行特征选择还是数据压缩,都可以获得最准确的结果。应用于融合的 NIR 和 MIR 光谱的化学计量学策略代表了一种基于橄榄品种对特级初榨橄榄油进行分类的有效方法。