Physics Department, Durham University, South Road, Durham DH1 3LE, United Kingdom.
J Phys Chem A. 2010 Mar 18;114(10):3569-75. doi: 10.1021/jp9096869.
Mineral-catalyzed decarboxylation reactions are important in both crude oil formation and, increasingly, biofuel production. In this study we examined decarboxylation reactions of a model fatty acid, propionic acid, C(2)H(5)COOH, to an alkane, C(2)H(6), in a model of pyrophillite with an isomorphic substitution of aluminum in the tetrahedral layer. We model a postulated reaction mechanism (Almon, W. R.; Johns, W. D. 7th International Meeting on Organic Geochemistry 1975, Vol. 7) to ascertain the role of Al substitution and a counterion in decarboxylation reactions. We employ a periodic cell, planewave, ab initio DFT computation to examine the total energies and the frontier orbitals of different model sets, including the effects of charge on the reaction, the effect of Al substitution, and the role of Na counterions. The results show that an uncharged system with a sodium counterion is most feasible for catalyzing the decarboxylation reaction in an Al-substituted pyrophillite and, also, that analysis of the orbitals is a better indicator of a reaction than charge alone.
矿物催化的脱羧反应在原油形成和生物燃料生产中都很重要。在这项研究中,我们研究了模型脂肪酸丙酸 C(2)H(5)COOH 在叶蜡石模型中与四面体层中铝的同晶取代的情况下与烷烃 C(2)H(6)的脱羧反应。我们建立了一个假定的反应机制 (Almon, W. R.; Johns, W. D. 7th International Meeting on Organic Geochemistry 1975, Vol. 7),以确定 Al 取代和反离子在脱羧反应中的作用。我们采用周期性单元、平面波、从头算 DFT 计算来研究不同模型集的总能量和前沿轨道,包括反应电荷、Al 取代和 Na 反离子的作用的影响。结果表明,带钠离子的不带电荷系统最适合在 Al 取代的叶蜡石中催化脱羧反应,并且轨道分析比单独的电荷更能指示反应。