CEA, Nanostructures et Semi-Conducteurs Organiques, SPCSI, F-91191 Gif-sur-Yvette, France.
ACS Nano. 2010 Mar 23;4(3):1288-92. doi: 10.1021/nn901717k.
The two-dimensional (2D) crystal engineering of molecular architectures on surfaces requires controlling various parameters related respectively to the substrate, the chemical structure of the molecules, and the environmental conditions. We investigate here the influence of temperature on the self-assembly of hexakis(n-dodecyl)-peri-hexabenzocoronene (HBC-C(12)) adsorbed on gold using scanning tunneling microscopy (STM) at the liquid/solid interface. We show that the packing density of 2D self-assembled HBC-C(12) can be precisely tuned by adjusting the substrate temperature. Increasing the temperature progressively over the 20-50 degrees C range induces three irreversible phase transitions and a 3-fold increase of the packing density from 0.111 to 0.356 molecule/nm(2). High-resolution STM images reveal that this 2D packing density increase arises from the stepwise desorption of the n-dodecyl chains from the gold surface. Such temperature-controlled irreversible phase transitions are thus a versatile tool that can then be used to adjust the packing density of highly ordered functional materials in view of applications in organic electronic devices.
在表面上对分子结构进行二维(2D)晶体工程需要控制与基底、分子的化学结构以及环境条件相关的各种参数。我们在这里使用扫描隧道显微镜(STM)研究了温度对吸附在金上的六(正十二烷基)-并五苯(HBC-C(12))自组装的影响。我们表明,通过调节基底温度可以精确调节二维自组装 HBC-C(12)的堆积密度。在 20-50 摄氏度的范围内升高温度会引起三个不可逆的相转变,并使堆积密度从 0.111 增加到 0.356 分子/nm(2),增加了 3 倍。高分辨率 STM 图像表明,这种二维堆积密度的增加是由于正十二烷基链从金表面逐步解吸所致。因此,这种温度控制的不可逆相转变是一种通用工具,可以用于调节高度有序的功能材料的堆积密度,以期在有机电子器件中得到应用。