Department of Physics, University of Surrey, Guildford, UK.
Phys Med Biol. 2010 Mar 7;55(5):1531-47. doi: 10.1088/0031-9155/55/5/018. Epub 2010 Feb 16.
X-ray microbeam radiation therapy (MRT) is a novel form of treatment, currently in its preclinical stage, which uses microplanar x-ray beams from a synchrotron radiation source. It is important to perform accurate dosimetry on these microbeams, but, to date, there has been no accurate enough method available for making 3D dose measurements with isotropic, high spatial resolution to verify the results of Monte Carlo dose simulations. Here, we investigate the potential of optical computed tomography for satisfying these requirements. The construction of a simple optical CT microscopy (optical projection tomography) system from standard commercially available hardware is described. The measurement of optical densities in projection data is shown to be highly linear (r2=0.999). The depth-of-field (DOF) of the imaging system is calculated based on the previous literature and measured experimentally using a commercial DOF target. It is shown that high quality images can be acquired despite the evident lack of telecentricity and despite DOF of the system being much lower than the sample diameter. Possible reasons for this are discussed. Results are presented for a complex irradiation of a 22 mm diameter cylinder of the radiochromic polymer PRESAGE, demonstrating the exquisite 'dose-painting' abilities available in the MRT hutch of beamline ID-17 at the European Synchrotron Radiation Facility. Dose distributions in this initial experiment are equally well resolved on both an optical CT scan and a corresponding transmission image of radiochromic film, down to a line width of 83 microm (6 lp mm(-1)) with an MTF value of 0.40. A group of 33 microm wide lines was poorly resolved on both the optical CT and film images, and this is attributed to an incorrect exposure time calculation, leading to under-delivery of dose. Image artefacts in the optical CT scan are discussed. PRESAGE irradiated using the microbeam facility is proposed as a suitable material for producing phantom samples for quantitative characterization of optical CT microscopy systems.
X 射线微束放射治疗(MRT)是一种新型的治疗方式,目前处于临床前阶段,它使用同步辐射源产生的微平面 X 射线束。对这些微束进行精确的剂量测量非常重要,但迄今为止,还没有足够精确的方法可以进行各向同性、高空间分辨率的 3D 剂量测量,以验证蒙特卡罗剂量模拟的结果。在这里,我们研究了光学计算机断层扫描(CT)在满足这些要求方面的潜力。本文描述了如何使用标准的商业硬件构建简单的光学 CT 显微镜(光学投影断层扫描)系统。实验表明,在投影数据中测量光密度具有高度的线性(r2=0.999)。根据先前的文献和使用商业景深目标进行的实验测量,计算出成像系统的景深(DOF)。结果表明,尽管系统的景深明显低于样品直径,而且明显缺乏远心度,但仍可以获得高质量的图像。对此可能的原因进行了讨论。结果展示了对直径为 22 毫米的 PRESAGE 放射性聚合物圆柱体的复杂照射,展示了在欧洲同步辐射设施 ID-17 光束线的 MRT 小室内进行的精确的“剂量绘制”能力。在这个初始实验中,无论是在光学 CT 扫描还是在放射性乳胶膜的相应透射图像中,都可以很好地分辨剂量分布,其线宽分辨率达到 83 微米(6 lp mm(-1)),调制传递函数(MTF)值为 0.40。在光学 CT 和乳胶膜图像中,一组 33 微米宽的线分辨较差,这归因于曝光时间计算错误,导致剂量不足。讨论了光学 CT 扫描中的图像伪影。提出使用微束装置辐照 PRESAGE 作为制作定量光学 CT 显微镜系统的幻影样本的合适材料。