Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, United Kingdom.
Faraday Discuss. 2010;144:285-99; discussion 323-45, 467-81. doi: 10.1039/b905378f.
The crossover from single-file diffusion, where the mean-square displacement scales as (x2) to approximately t(1/2), to normal Fickian diffusion, where (x2) to approximately t, is studied as a function of channel width for colloidal particles. By comparing Brownian dynamics to a hybrid molecular dynamics and mesoscopic simulation technique, we can study the effect of hydrodynamic interactions on the single file mobility and on the crossover to Fickian diffusion for wider channel widths. For disc-like particles with a steep interparticle repulsion, the single file mobilities for different particle densities are well described by the exactly solvable hard-rod model. This holds both for simulations that include hydrodynamics, as well as for those that do not. When the single file constraint is lifted, then for particles of diameter sigma and pipe of width L such that (L - 2sigma)/sigma = deltac << 1, the particles can be described as hopping past one-another in an average time t(hop). For shorter times t << t(hop) the particles still exhibit sub-diffusive behaviour, but at longer times t >> t(hop), normal Fickian diffusion sets in with an effective diffusion constant Dhop to approximately 1/ mean square root of t(hop). For the Brownian particles, t(hop) to approximately deltac(-2) when deltac << 1, but when hydrodynamic interactions are included, we find a stronger dependence than deltac(-2). We attribute this difference to short-range lubrication forces that make it more difficult for particles to hop past each other in very narrow channels.
作为胶体粒子,研究了从单分子扩散(其中均方位移与 t^(1/2)成正比)到正常的菲克扩散(其中均方位移与 t 成正比)的转变,作为通道宽度的函数。通过将布朗动力学与混合分子动力学和介观模拟技术进行比较,可以研究流体动力学相互作用对单分子迁移率以及对更宽通道宽度的菲克扩散转变的影响。对于具有陡峭粒子间排斥的盘状粒子,不同粒子密度的单分子迁移率可以很好地由可精确求解的硬棒模型来描述。这既适用于包括流体动力学的模拟,也适用于不包括流体动力学的模拟。当解除单分子约束时,对于直径为 sigma 且宽度为 L 的粒子,如果 (L - 2sigma)/sigma = deltac << 1,则粒子可以在平均时间 t(hop)内相互跳跃。对于较短的时间 t << t(hop),粒子仍然表现出亚扩散行为,但对于较长的时间 t >> t(hop),正常的菲克扩散开始,有效扩散常数 Dhop 大约为 1/ t(hop)的平方根。对于布朗粒子,当 deltac << 1 时,t(hop)大约为 deltac^(-2),但当包括流体动力学相互作用时,我们发现它的依赖性比 deltac^(-2)更强。我们将这种差异归因于短程润滑力,这使得粒子在非常狭窄的通道中相互跳跃变得更加困难。