5000 Belanger St East, Montreal, Quebec H1T 1C8, Canada.
Circulation. 2010 Mar 2;121(8):963-72. doi: 10.1161/CIRCULATIONAHA.109.893107. Epub 2010 Feb 16.
Adenosine acutely reconnects pulmonary veins (PVs) after radiofrequency application, revealing "dormant conduction" and identifying PVs at risk of reconnection, but the underlying mechanisms are unknown.
Canine PV and left-atrial (LA) action potentials were recorded with standard microelectrodes and ionic currents with whole-cell patch clamp before and after adenosine perfusion. PVs were isolated with radiofrequency current application in coronary-perfused LA-PV preparations. Adenosine abbreviated action potential duration similarly in PV and LA but significantly hyperpolarized resting potential (by 3.9+/-0.5%; P<0.05) and increased dV/dt(max) (by 34+/-10%) only in PV. Increased dV/dt(max) was not due to direct effects on I(Na), which was reduced similarly by adenosine in LA and PV but correlated with resting-potential hyperpolarization (r=0.80). Adenosine induced larger inward rectifier K(+)current (I(KAdo)) in PV (eg, -2.28+/-0.04 pA/pF; -100 mV) versus LA (-1.28+/-0.16 pA/pF). Radiofrequency ablation isolated PVs by depolarizing resting potential to voltages positive to -60 mV. Adenosine restored conduction in 5 dormant PVs, which had significantly more negative resting potentials (-57+/-6 mV) versus nondormant (-46+/-5 mV, n=6; P<0.001) before adenosine. Adenosine hyperpolarized both, but more negative resting-potential values after adenosine in dormant PVs (-66+/-6 mV versus -56+/-6 mV in nondormant; P<0.001) were sufficient to restore excitability. Adenosine effects on resting potential and conduction reversed on washout. Spontaneous recovery of conduction occurring in dormant PVs after 30 to 60 minutes was predicted by the adenosine response.
Adenosine selectively hyperpolarizes canine PVs by increasing I(KAdo). PVs with dormant conduction show less radiofrequency-induced depolarization than nondormant veins, allowing adenosine-induced hyperpolarization to restore excitability by removing voltage-dependent I(Na) inactivation and explaining the restoration of conduction in dormant PVs.
腺苷在射频应用后急性重新连接肺静脉 (PV),揭示“休眠传导”并识别有重新连接风险的 PV,但潜在机制尚不清楚。
在冠状灌流左心房-肺静脉 (LA-PV) 标本中,使用标准微电极和全细胞膜片钳技术在腺苷灌注前后记录犬 PV 和左心房 (LA) 动作电位和离子电流。用射频电流应用分离 PV。腺苷在 PV 和 LA 中同样缩短动作电位时程,但显著超极化静息电位 (达 3.9+/-0.5%; P<0.05) 并增加最大上升速度 (达 34+/-10%) 仅在 PV 中。增加的最大上升速度不是由于对 I(Na) 的直接作用,腺苷在 LA 和 PV 中同样降低 I(Na),但与静息电位超极化相关 (r=0.80)。腺苷在 PV 中诱导更大的内向整流钾电流 (I(KAdo)) (例如,-2.28+/-0.04 pA/pF;-100 mV) 而在 LA 中 (-1.28+/-0.16 pA/pF)。射频消融通过将静息电位去极化至大于-60 mV 的电压来隔离 PV。腺苷在 5 个休眠 PV 中恢复传导,与非休眠 PV(-46+/-5 mV,n=6;P<0.001)相比,休眠 PV 具有明显更负的静息电位 (-57+/-6 mV)。腺苷超极化两者,但在休眠 PV 中静息电位超极化后 (-66+/-6 mV 与非休眠 PV 中的-56+/-6 mV;P<0.001) 值足以恢复兴奋性。腺苷对静息电位和传导的影响在洗脱时逆转。在 30 至 60 分钟后,在休眠 PV 中发生的传导自发恢复可通过腺苷反应预测。
腺苷通过增加 I(KAdo)选择性地超极化犬 PV。与非休眠静脉相比,具有休眠传导的 PV 显示出较少的射频诱导去极化,这使得腺苷诱导的超极化通过消除电压依赖性 I(Na)失活来恢复兴奋性,并解释了在休眠 PV 中传导的恢复。