Suppr超能文献

电子结构分析生物修复剂甘油磷酸二酯酶(GpdQ)中双核金属中心在 Enterobacter aerogenes 中的结构。

Electronic structure analysis of the dinuclear metal center in the bioremediator glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes.

机构信息

School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.

出版信息

Inorg Chem. 2010 Mar 15;49(6):2727-34. doi: 10.1021/ic901950c.

Abstract

The glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a promiscuous, dinuclear metallohydrolase that has potential application in the remediation of organophosphate nerve agents and pesticides. GpdQ employs an unusual reaction mechanism in which the enzyme is predominantly mononuclear in the resting state, and substrate binding induces the formation of the catalytically competent dinuclear center (Hadler et al. J. Am. Chem. Soc. 2008, 130, 14129). Reactivity is further modulated by the coordination flexibility of Asn80, a ligand that binds to the second, loosely bound metal ion (Hadler et al. J. Am. Chem. Soc. 2009, 131, 11900). It is proposed that hydrolysis is initiated by a terminal, metal-bound hydroxide molecule which is activated at unusually low pH by electrostatic/hydrogen bonding interactions with a bridging hydroxide species. In this study, electronic structure analysis of the dinuclear center is employed to study the coordination environment of the dinuclear center at the resting and product-bound stage of catalysis. This is achieved through the use of variable temperature, variable field magnetic circular dichroism experiments involving the Co(II)-substituted wild type enzyme and its Asn80Asp variant. The data support the above model for the catalytic mechanism whereby the metal ion-bridging hydroxide molecule activates a terminally bound hydroxide nucleophile. Replacement of Asn80 by an aspartate residue does prevent coordination flexibility but also leads to cleavage of the mu-hydroxide bridge and reduced reactivity. This is the first study to investigate the electronic structure of an enzyme with a mu-1,1-carboxylate bridged dicobalt(II) center.

摘要

气单胞菌甘油磷酸二酯酶(GpdQ)是一种混杂的双核金属水解酶,具有修复有机磷神经毒剂和农药的潜在应用。GpdQ 采用一种不寻常的反应机制,在静止状态下,酶主要是单核的,而底物结合诱导催化活性双核中心的形成(Hadler 等人,J. Am. Chem. Soc. 2008, 130, 14129)。反应性进一步通过 Asn80 的配位灵活性来调节,Asn80 是结合第二个松散结合金属离子的配体(Hadler 等人,J. Am. Chem. Soc. 2009, 131, 11900)。据推测,水解是由末端的、金属结合的氢氧化物分子引发的,该分子在异常低的 pH 值下通过静电/氢键相互作用与桥接氢氧化物物种被激活。在这项研究中,采用电子结构分析双核中心,研究催化过程中双核中心的静止和产物结合阶段的配位环境。这是通过使用涉及 Co(II)取代野生型酶及其 Asn80Asp 变体的变温、变场磁圆二色性实验来实现的。数据支持了上述催化机制模型,其中金属离子桥接氢氧化物分子激活末端结合的氢氧化物亲核试剂。用天冬氨酸残基取代 Asn80 确实会阻止配位灵活性,但也会导致μ-氢氧化物桥的断裂和反应性降低。这是首次研究具有μ-1,1-羧酸盐桥联双核 Co(II)中心的酶的电子结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验