Department of Biology, Emory University, Atlanta, Georgia 30322, USA.
J Neurosci. 2010 Feb 17;30(7):2767-82. doi: 10.1523/JNEUROSCI.3959-09.2010.
Synchronization of globus pallidus (GP) neurons and cortically entrained oscillations between GP and other basal ganglia nuclei are key features of the pathophysiology of Parkinson's disease. Phase response curves (PRCs), which tabulate the effects of phasic inputs within a neuron's spike cycle on output spike timing, are efficient tools for predicting the emergence of synchronization in neuronal networks and entrainment to periodic input. In this study we apply physiologically realistic synaptic conductance inputs to a full morphological GP neuron model to determine the phase response properties of the soma and different regions of the dendritic tree. We find that perisomatic excitatory inputs delivered throughout the interspike interval advance the phase of the spontaneous spike cycle yielding a type I PRC. In contrast, we demonstrate that distal dendritic excitatory inputs can either delay or advance the next spike depending on whether they occur early or late in the spike cycle. We find this latter pattern of responses, summarized by a biphasic (type II) PRC, was a consequence of dendritic activation of the small conductance calcium-activated potassium current, SK. We also evaluate the spike-frequency dependence of somatic and dendritic PRC shapes, and we demonstrate the robustness of our results to variations of conductance densities, distributions, and kinetic parameters. We conclude that the distal dendrite of GP neurons embodies a distinct dynamical subsystem that could promote synchronization of pallidal networks to excitatory inputs. These results highlight the need to consider different effects of perisomatic and dendritic inputs in the control of network behavior.
苍白球神经元的同步和苍白球与其他基底神经节核团之间的皮层诱导振荡是帕金森病病理生理学的关键特征。相位反应曲线(PRC),它在神经元的尖峰周期内记录相位输入对输出尖峰时间的影响,是预测神经元网络中同步出现和对周期性输入的同步的有效工具。在这项研究中,我们将生理现实的突触电导输入应用于完整的形态苍白球神经元模型,以确定体和树突不同区域的相位反应特性。我们发现,在尖峰间隔期间传递的周围兴奋性输入会提前尖峰周期的相位,产生 I 型 PRC。相比之下,我们证明,远端树突兴奋性输入可以根据它们在尖峰周期中的早期或晚期出现而延迟或提前下一个尖峰。我们发现这种由小电导钙激活钾电流 SK 激活树突引起的双相(II 型)PRC 反应模式是这种反应模式的结果。我们还评估了体和树突 PRC 形状的尖峰频率依赖性,并证明了我们的结果对电导密度、分布和动力学参数变化的稳健性。我们得出结论,苍白球神经元的远端树突体现了一个独特的动态子系统,它可以促进苍白球网络对兴奋性输入的同步。这些结果强调了在控制网络行为时需要考虑周围和树突输入的不同影响。