Castaño A R, Lauzurica P, Domenech N, López de Castro J A
Department of Immunology, Fundación Jiménez Díaz, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
J Immunol. 1991 May 1;146(9):2915-20.
Alloreactive CTL raised against HLA-A2 Ag often display heterogeneous recognition of HLA-A2+ target cells. This heterogeneity has been found to reflect structural polymorphism among the corresponding target Ag, thus defining HLA-A2 subtypes. A previous study (van der Poel et al. 1986. Human Immunol. 16:247) established the existence of a new HLA-A2.4 variant, A2-SCHU, that was distinguished from A0206 (A2.4a) by HLA-A2-specific alloreactive CTL. The same CTL subdivided HLA-A2.1 Ag into two subgroups. In the present study, the molecular basis of this heterogeneity has been examined by double-label comparative peptide mapping analysis of differentially recognized A2.1 and A2.4 Ag. In addition, we have determined the complete sequence of polymerase chain reaction-amplified full length cDNA from A2-SCHU. The results show that: 1) A2-SCHU is indistinguishable from A0206 by peptide mapping; 2) the cDNA sequence of A2-SCHU is identical to that of A0206; and 3) two differentially recognized A2.1 Ag are both indistinguishable from A0201 by comparative peptide mapping. These results indicate that differential recognition by alloreactive CTL can occur among structurally identical class I HLA Ag and suggest that allorecognition by such CTL may involve corecognition of endogenous peptides, presumably derived from polymorphic proteins.