Suppr超能文献

无融合生殖植物中自育性的进化。

The evolution of self-fertility in apomictic plants.

作者信息

Hörandl Elvira

机构信息

Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030, Vienna, Austria.

出版信息

Sex Plant Reprod. 2010 Mar;23(1):73-86. doi: 10.1007/s00497-009-0122-3. Epub 2009 Nov 20.

Abstract

Self-fertilization and apomixis have often been seen as alternative evolutionary strategies of flowering plants that are advantageous for colonization scenarios and in bottleneck situations. Both traits have multiple origins, but different genetic control mechanisms; possible connections between the two phenomena have long been overlooked. Most apomictic plants, however, need a fertilization of polar nuclei for normal seed development (pseudogamy). If self-pollen is used for this purpose, self-compatibility is a requirement for successful pollen tube growth. Apomictic lineages usually evolve from sexual self-incompatible outcrossing plants, but pseudogamous apomicts frequently show a breakdown of self-incompatibility. Two possible pathways may explain the evolution of SC: (1) Polyploidy not only may trigger gametophytic apomixis, but also may result in a partial breakdown of SI systems. (2) Alternatively, frequent pseudo self-compatibility (PSC) via aborted pollen may induce selfing of pseudogamous apomicts (mentor effects). Self-fertile pseudogamous genotypes will be selected for within mixed sexual-apomictic populations because of avoidance of interploidal crosses; in founder situations, SC provides reproductive assurance independent from pollinators and mating partners. SI pseudogamous genotypes will be selected against in mixed populations because of minority cytotype problems and high pollen discounting; in founder populations, SI reactions among clone mates will reduce seed set. Selection for SC genotypes will eliminate SI unless the apomict maintains a high genotypic diversity and thus a diversity of S-alleles within a population, or shifts to pollen-independent autonomous apomixis. The implications of a breakdown of SI in apomictic plants for evolutionary questions and for agricultural sciences are being discussed.

摘要

自花受精和无融合生殖常被视为开花植物的两种替代性进化策略,这两种策略在植物定殖和瓶颈情况下具有优势。这两种特性都有多个起源,但遗传控制机制不同;长期以来,人们一直忽视了这两种现象之间可能存在的联系。然而,大多数无融合生殖植物正常种子发育需要极核受精(假受精)。如果为此使用自花花粉,成功的花粉管生长就需要自交亲和性。无融合生殖谱系通常从有性自交不亲和的异交植物进化而来,但假受精的无融合生殖植物常常表现出自交不亲和性的丧失。两种可能的途径可以解释自交亲和性的进化:(1)多倍体不仅可能引发配子体无融合生殖,还可能导致自交不亲和系统的部分丧失。(2)或者,通过败育花粉频繁出现的假自交亲和性(PSC)可能诱导假受精无融合生殖植物自交(“导师效应”)。由于避免了倍间杂交,自交可育的假受精基因型将在有性 - 无融合生殖混合群体中被选择;在奠基者群体中,自交亲和性提供了独立于传粉者和交配伙伴的繁殖保障。在混合群体中,由于少数细胞型问题和高花粉折扣,自交不亲和的假受精基因型将被淘汰;在奠基者群体中,克隆伙伴之间的自交不亲和反应将减少结实率。对自交亲和基因型的选择将消除自交不亲和性,除非无融合生殖植物在种群中保持高基因型多样性,从而保持S - 等位基因的多样性,或者转向不依赖花粉的自主无融合生殖。本文讨论了无融合生殖植物自交不亲和性丧失对进化问题和农业科学的影响。

相似文献

1
The evolution of self-fertility in apomictic plants.
Sex Plant Reprod. 2010 Mar;23(1):73-86. doi: 10.1007/s00497-009-0122-3. Epub 2009 Nov 20.
3
The Rise of Apomixis in Natural Plant Populations.
Front Plant Sci. 2019 Apr 2;10:358. doi: 10.3389/fpls.2019.00358. eCollection 2019.
5
Mating in the pseudogamic apomictic Anemopaegma acutifolium DC: another case of pseudo-self-compatibility in Bignoniaceae?
Plant Biol (Stuttg). 2013 Sep;15(5):919-24. doi: 10.1111/j.1438-8677.2012.00692.x. Epub 2012 Nov 5.
7
Breeding systems, hybridization and continuing evolution in Avon Gorge Sorbus.
Ann Bot. 2013 Apr;111(4):563-75. doi: 10.1093/aob/mct013. Epub 2013 Feb 13.
8
Maintenance of mixed mating after the loss of self-incompatibility in a long-lived perennial herb.
Ann Bot. 2017 Jan;119(1):177-190. doi: 10.1093/aob/mcw203. Epub 2016 Dec 10.

引用本文的文献

2
New Frontiers in Potato Breeding: Tinkering with Reproductive Genes and Apomixis.
Biomolecules. 2024 May 23;14(6):614. doi: 10.3390/biom14060614.
4
Apomixis and the paradox of sex in plants.
Ann Bot. 2024 Jun 7;134(1):1-18. doi: 10.1093/aob/mcae044.
8
Genomic conservation of crop wild relatives: A case study of citrus.
PLoS Genet. 2023 Jun 20;19(6):e1010811. doi: 10.1371/journal.pgen.1010811. eCollection 2023 Jun.
9
Geometric Morphometric Versus Genomic Patterns in a Large Polyploid Plant Species Complex.
Biology (Basel). 2023 Mar 9;12(3):418. doi: 10.3390/biology12030418.

本文引用的文献

1
Polyploidy and self-compatibility: is there an association?
New Phytol. 2004 Jun;162(3):803-811. doi: 10.1111/j.1469-8137.2004.01055.x.
3
SUPPORT FOR BAKER'S LAW-AS A RULE.
Evolution. 1967 Dec;21(4):853-856. doi: 10.1111/j.1558-5646.1967.tb03440.x.
4
Apomixis in agriculture: the quest for clonal seeds.
Sex Plant Reprod. 2001 Dec;14(4):179-87. doi: 10.1007/s00497-001-0117-1. Epub 2001 Nov 14.
5
Genetic analysis of apomixis in Citrus and Poncirus by molecular markers.
Theor Appl Genet. 1999 Aug;99(3-4):511-8. doi: 10.1007/s001220051264.
7
Polyploidy and self-fertilization in flowering plants.
Am J Bot. 2007 Sep;94(9):1527-33. doi: 10.3732/ajb.94.9.1527.
8
Understanding the geographic distributions of apomictic plants: a case for a pluralistic approach.
Plant Ecol Divers. 2008 Nov 1;1(2):309-320. doi: 10.1080/17550870802351175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验