文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过调节微凝胶构筑块胶体的网络性质来调控高响应水凝胶支架的体积转变。

Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids.

机构信息

Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63144, USA.

出版信息

Langmuir. 2010 Mar 16;26(6):3854-9. doi: 10.1021/la903350j.


DOI:10.1021/la903350j
PMID:20166725
Abstract

We present a simple method to control the volume change of thermally responsive hydrogel scaffolds, providing a remarkably fast swelling and deswelling response to temperature changes. These scaffolds have 3-dimensional colloidal-network structures which are made from microgel particles while they are above their deswelling transition temperatures. By tuning the cross-link density of the microgel particles, we achieve controllable changes of the volume of the scaffolds in response to temperature. Their fast response rate is determined by the length scale of the unit microgel particles and is not influenced by the properties of the network. The release profile of a model drug (Rhapontin) loaded within the scaffolds can also be regulated by the cross-linking density of the microgel particles. These results offer a new way of fabricating hydrogel scaffolds with tunable matrix geometry and function by adjusting the properties of the unit microgel colloids, without loss of their fast response to temperature change.

摘要

我们提出了一种简单的方法来控制热响应水凝胶支架的体积变化,为温度变化提供了显著快速的溶胀和收缩响应。这些支架具有 3 维胶体网络结构,由微凝胶颗粒组成,而它们在溶胀转变温度以上。通过调整微凝胶颗粒的交联密度,我们实现了支架体积对温度的可控变化。它们的快速响应速率由单元微凝胶颗粒的长度尺度决定,不受网络性质的影响。模型药物(瑞鲍迪甙)在支架内的释放曲线也可以通过微凝胶颗粒的交联密度来调节。这些结果提供了一种新的方法来制备具有可调谐基质几何形状和功能的水凝胶支架,通过调整单元微凝胶胶体的性质,而不损失其对温度变化的快速响应。

相似文献

[1]
Regulating volume transitions of highly responsive hydrogel scaffolds by adjusting the network properties of microgel building block colloids.

Langmuir. 2010-3-16

[2]
Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks.

J Colloid Interface Sci. 2010-5-26

[3]
Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.

J Phys Chem B. 2010-8-19

[4]
Thermoresponsive microgel-based materials.

Chem Soc Rev. 2009-4

[5]
In situ gelation of P(NIPAM-HEMA) microgel dispersion and its applications as injectable 3D cell scaffold.

Biomacromolecules. 2009-6-8

[6]
Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids.

J Chem Phys. 2004-4-1

[7]
Temperature-responsive semipermeable capsules composed of colloidal microgel spheres.

Langmuir. 2007-1-16

[8]
Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems.

Adv Colloid Interface Sci. 2008-1-15

[9]
Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels.

Biomaterials. 2004-8

[10]
Photothermal patterning of microgel/gold nanoparticle composite colloidal crystals.

J Am Chem Soc. 2003-1-15

引用本文的文献

[1]
On Going to a New Era of Microgel Exhibiting Volume Phase Transition.

Gels. 2020-8-17

[2]
A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.

Molecules. 2016-11-21

[3]
Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids.

Sci Rep. 2016-10-5

[4]
Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review.

Acta Biomater. 2010-7-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索