Department of Chinese Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
Curr Drug Metab. 2009 Dec;10(10):1127-50. doi: 10.2174/138920009790820101.
Part I of this article published in the previous issue of Current Drug Metabolism discussed the substrate specificity, inhibitor selectivity and structure-activity relationship (SAR) of human CYP2C9. The features of CYP2C9 pharmacophore and SAR models have been elaborated. Part II of this article will address the homology models of CYP2C9, data from site-directed mutagenesis studies, and crystal structural features of CYP2C9. The heteroactivation of CYP2C9 and its interactions with other CYPs will also be discussed. A number of ligand-based and homology models of CYP2C9 have been reported and this has provided insights into the binding of ligands to the active site of CYP2C9. Site-directed mutagenesis studies have revealed that a number of residues (e.g. R97, F110, F114, R132, R144, D293, F476 and A477) play an important role in ligand binding and determination of substrate specificity. The resolved crystal structures of CYP2C9 have confirmed the importance of these residues in substrate recognition and ligand orientation. Currently, there are three X-ray structures of the human CYP2C9 in Protein Database (PDB): one ligand-free protein (1OG2), and two in complex with S-warfarin (1OG5) or flurbiprofen (1R9O). The published structures of 1OG2 and 1OG5 differ in comparison with 1R9O in residues 30-53 of N-termini, residues 97-121 of B/C-loops, and residues 196-233 of helix F and F/G-loops. CYP2C9 is a two-domain protein with typical fold characteristics of the CYPs. The B-C loop forms part of the active site and contributes to substrate specificity. In the structures of CYP2C9 without ligand bound or with bound S-warfarin, residues 101-106 in the B-C loop form helix B'. In addition, residues 212-222 in the F-G loop form helices F' and G', which was not observed in rabbit CYP2C5 and bacterial CYPs. In the 1OG2 and 1OG5 structures, the heme is stabilized by hydrogen bonds between the propionates and the side chains of W120, R124, H368 and R433. In addition, R97 forms hydrogen bonds to the propionates as well as the carbonyl oxygen atoms of V113 and P367. CYP2C9 is activated by dapsone and its analogues and R-lansoprazole in a stereo-specific and substrate-dependent manner, probably through binding to the active site and inducing positive cooperativity. Further studies are needed to investigate the molecular determinants for ligand-CYP2C9 interactions.
本文第一部分发表在上期的《当代药物代谢》中,讨论了人细胞色素 CYP2C9 的底物特异性、抑制剂选择性和构效关系(SAR)。阐述了 CYP2C9 药效基团和 SAR 模型的特征。本文第二部分将讨论 CYP2C9 的同源模型、定点突变研究的数据以及 CYP2C9 的晶体结构特征。还将讨论 CYP2C9 的异源激活及其与其他 CYP 的相互作用。已经报道了许多基于配体和 CYP2C9 的同源模型,这为配体与 CYP2C9 的活性位点结合提供了深入的了解。定点突变研究表明,许多残基(例如 R97、F110、F114、R132、R144、D293、F476 和 A477)在配体结合和确定底物特异性方面起着重要作用。已解析的 CYP2C9 晶体结构证实了这些残基在底物识别和配体定向中的重要性。目前,蛋白质数据库(PDB)中有三种人 CYP2C9 的 X 射线结构:一种无配体的蛋白(1OG2),以及与 S-华法林(1OG5)或氟比洛芬(1R9O)结合的两种。已发表的 1OG2 和 1OG5 结构与 1R9O 相比,在 N 端 30-53 位残基、B/C 环 97-121 位残基和 F 螺旋和 F/G 环 196-233 位残基上存在差异。CYP2C9 是一种具有 CYP 典型折叠特征的双域蛋白。B-C 环是活性位点的一部分,有助于底物特异性。在没有配体结合或与 S-华法林结合的 CYP2C9 结构中,B-C 环的 101-106 位残基形成 B'螺旋。此外,F-G 环的 212-222 位残基形成 F'和 G'螺旋,这在兔 CYP2C5 和细菌 CYP 中未观察到。在 1OG2 和 1OG5 结构中,血红素通过 propionates 与 W120、R124、H368 和 R433 的侧链之间的氢键稳定。此外,R97 与 propionates 以及 V113 和 P367 的羰基氧原子形成氢键。达普司酮及其类似物和 R-兰索拉唑以立体特异性和底物依赖性方式激活 CYP2C9,可能通过与活性位点结合并诱导正协同作用。需要进一步研究以研究配体-CYP2C9 相互作用的分子决定因素。