Suppr超能文献

理想化关节几何形状对髋关节软骨接触应力有限元预测的影响。

Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.

机构信息

Department of Orthopaedics, University of Utah, 590 Wakara Way, Rm A100, Salt Lake City, UT 84108, USA.

出版信息

J Biomech. 2010 May 7;43(7):1351-7. doi: 10.1016/j.jbiomech.2010.01.010. Epub 2010 Feb 21.

Abstract

Computational models may have the ability to quantify the relationship between hip morphology, cartilage mechanics and osteoarthritis. Most models have assumed the hip joint to be a perfect ball and socket joint and have neglected deformation at the bone-cartilage interface. The objective of this study was to analyze finite element (FE) models of hip cartilage mechanics with varying degrees of simplified geometry and a model with a rigid bone material assumption to elucidate the effects on predictions of cartilage stress. A previously validated subject-specific FE model of a cadaveric hip joint was used as the basis for the models. Geometry for the bone-cartilage interface was either: (1) subject-specific (i.e. irregular), (2) spherical, or (3) a rotational conchoid. Cartilage was assigned either a varying (irregular) or constant thickness (smoothed). Loading conditions simulated walking, stair-climbing and descending stairs. FE predictions of contact stress for the simplified models were compared with predictions from the subject-specific model. Both spheres and conchoids provided a good approximation of native hip joint geometry (average fitting error approximately 0.5mm). However, models with spherical/conchoid bone geometry and smoothed articulating cartilage surfaces grossly underestimated peak and average contact pressures (50% and 25% lower, respectively) and overestimated contact area when compared to the subject-specific FE model. Models incorporating subject-specific bone geometry with smoothed articulating cartilage also underestimated pressures and predicted evenly distributed patterns of contact. The model with rigid bones predicted much higher pressures than the subject-specific model with deformable bones. The results demonstrate that simplifications to the geometry of the bone-cartilage interface, cartilage surface and bone material properties can have a dramatic effect on the predicted magnitude and distribution of cartilage contact pressures in the hip joint.

摘要

计算模型可能具有量化髋关节形态、软骨力学和骨关节炎之间关系的能力。大多数模型都假设髋关节为完美的球窝关节,并忽略了骨软骨界面的变形。本研究的目的是分析具有不同简化几何形状的髋关节软骨力学有限元(FE)模型和具有刚性骨材料假设的模型,以阐明这些模型对软骨应力预测的影响。以前验证过的尸体髋关节的特定于主题的 FE 模型被用作模型的基础。骨软骨界面的几何形状为:(1)特定于主题(即不规则),(2)球形,或(3)旋转圆锥曲线。软骨的厚度要么是变化的(不规则的),要么是恒定的(平滑的)。模拟行走、爬楼梯和下楼梯的加载条件。简化模型的接触应力的 FE 预测与特定于主题的模型的预测进行了比较。球体和圆锥曲线都很好地近似了自然髋关节的几何形状(平均拟合误差约为 0.5mm)。然而,具有球形/圆锥曲线骨骼几何形状和平滑关节软骨表面的模型严重低估了峰值和平均接触压力(分别低 50%和 25%),并且与特定于主题的 FE 模型相比高估了接触面积。将特定于主题的骨骼几何形状与平滑关节软骨结合使用的模型也低估了压力,并预测了接触的均匀分布模式。具有刚性骨骼的模型预测的压力远高于具有可变形骨骼的特定于主题的模型。结果表明,骨软骨界面、软骨表面和骨骼材料特性的几何简化对髋关节软骨接触压力的预测幅度和分布有很大影响。

相似文献

1
Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip.
J Biomech. 2010 May 7;43(7):1351-7. doi: 10.1016/j.jbiomech.2010.01.010. Epub 2010 Feb 21.
2
3
A new discrete element analysis method for predicting hip joint contact stresses.
J Biomech. 2013 Apr 5;46(6):1121-7. doi: 10.1016/j.jbiomech.2013.01.012. Epub 2013 Mar 1.
4
Contributions of non-spherical hip joint cartilage surface to hip joint contact stress.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8166-9. doi: 10.1109/IEMBS.2011.6092014.
5
Hip joint geometry effects on cartilage contact stresses during a gait cycle.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6038-6041. doi: 10.1109/EMBC.2016.7592105.
6
Finite element prediction of cartilage contact stresses in normal human hips.
J Orthop Res. 2012 Jul;30(7):1133-9. doi: 10.1002/jor.22040. Epub 2011 Dec 30.
7
The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint.
J Biomech. 2016 Jun 14;49(9):1679-1685. doi: 10.1016/j.jbiomech.2016.03.050. Epub 2016 Apr 4.
8
Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
J Biomech. 2014 Jan 3;47(1):65-73. doi: 10.1016/j.jbiomech.2013.10.001. Epub 2013 Oct 18.
9
Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula.
Osteoarthritis Cartilage. 2013 Oct;21(10):1522-9. doi: 10.1016/j.joca.2013.06.008. Epub 2013 Jun 21.

引用本文的文献

1
Multivariate Quantitative Outcomes of Periacetabular Osteotomy Using Discrete Element Analysis.
Adv Orthop. 2025 Aug 22;2025:1479343. doi: 10.1155/aort/1479343. eCollection 2025.
2
Biomechanical analysis of hip, knee, and ankle joint contact forces during squats in elite powerlifters.
PLoS One. 2025 Jul 24;20(7):e0327973. doi: 10.1371/journal.pone.0327973. eCollection 2025.
3
Understanding Hip Contact Stress Based on Types of Physical Activity: A Systematic Review.
Health Sci Rep. 2025 Jan 22;8(1):e70305. doi: 10.1002/hsr2.70305. eCollection 2025 Jan.
4
The role of high-resolution cartilage thickness distribution for contact mechanics predictions in the tibiofemoral joint.
Proc Inst Mech Eng H. 2025 Jan;239(1):18-28. doi: 10.1177/09544119241307793. Epub 2025 Jan 9.
7
Finite Element Analysis of Normal and Dysplastic Hip Joints in Children.
J Pers Med. 2023 Nov 10;13(11):1593. doi: 10.3390/jpm13111593.
8
An Integrated Method of Biomechanics Modeling for Pelvic Bone and Surrounding Soft Tissues.
Bioengineering (Basel). 2023 Jun 19;10(6):736. doi: 10.3390/bioengineering10060736.
9
A Correspondence-Based Network Approach for Groupwise Analysis of Patient-Specific Spatiotemporal Data.
Ann Biomed Eng. 2023 Oct;51(10):2289-2300. doi: 10.1007/s10439-023-03270-6. Epub 2023 Jun 25.
10
A Musculoskeletal Model for Estimating Hip Contact Pressure During Walking.
Ann Biomed Eng. 2022 Dec;50(12):1954-1963. doi: 10.1007/s10439-022-03016-w. Epub 2022 Jul 21.

本文引用的文献

1
2
Cartilage thickness: factors influencing multidetector CT measurements in a phantom study.
Radiology. 2008 Jan;246(1):133-41. doi: 10.1148/radiol.2461062192.
3
Equivalence between short-time biphasic and incompressible elastic material responses.
J Biomech Eng. 2007 Jun;129(3):405-12. doi: 10.1115/1.2720918.
4
Hip joint center location by fitting conchoid shape to the acetabular rim region of MR images.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4477-80. doi: 10.1109/IEMBS.2004.1404244.
5
Physiologically based boundary conditions in finite element modelling.
J Biomech. 2007;40(10):2318-23. doi: 10.1016/j.jbiomech.2006.10.038. Epub 2006 Dec 12.
6
Cartilage contact pressure elevations in dysplastic hips: a chronic overload model.
J Orthop Surg Res. 2006 Oct 3;1:6. doi: 10.1186/1749-799X-1-6.
7
Finite element modelling of the pelvis: inclusion of muscular and ligamentous boundary conditions.
Med Eng Phys. 2007 Sep;29(7):739-48. doi: 10.1016/j.medengphy.2006.08.010. Epub 2006 Oct 10.
8
The relationship between acetabular retroversion and osteoarthritis of the hip.
J Bone Joint Surg Br. 2006 Jun;88(6):727-9. doi: 10.1302/0301-620X.88B6.17430.
9
Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.
J Biomech. 2006;39(11):1996-2004. doi: 10.1016/j.jbiomech.2005.06.026. Epub 2005 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验