Suppr超能文献

生物标志物研究中数据集的“阻抗匹配”

'Impedance matching' of data sets in biomarker research.

作者信息

Colatsky Thomas J

出版信息

Curr Opin Investig Drugs. 2010 Mar;11(3):262-4.

Abstract

The goal of biomarker research in drug development is to identify better ways of monitoring the effects of drugs on biological systems. Biomarker data are used to support decision making at various stages in the drug development process, and are also used to provide information on how drug use might be optimized in different patient populations. The evaluation and qualification of new safety biomarkers includes a rigorous analysis of the ability of a given biomarker to report specific pathological events at the cellular, tissue or systemic level. This evaluation often relies on the mapping of a continuous data set (eg, biomarker levels) onto discrete phenotypic descriptors (eg, pathology scores). The approach has been applied successfully to discover new and improved biomarkers of tissue injury, but may involve uncertainty when used to evaluate the ability of a biomarker to detect early events or events occurring near the threshold of drug action. Alternative approaches based on study endpoints that provide continuous descriptions of a disease state or drug action, coupled with measurements of changes in biological function, may provide a better 'impedance match' between input and output data in biomarker research, and improve the early assessment and prediction of drug safety issues.

摘要

药物研发中生物标志物研究的目标是确定更好的方法来监测药物对生物系统的影响。生物标志物数据用于支持药物研发过程中各个阶段的决策,还用于提供有关如何在不同患者群体中优化药物使用的信息。新的安全性生物标志物的评估和鉴定包括对给定生物标志物在细胞、组织或系统水平报告特定病理事件能力的严格分析。这种评估通常依赖于将连续数据集(如生物标志物水平)映射到离散的表型描述符(如病理评分)上。该方法已成功应用于发现新的和改进的组织损伤生物标志物,但在用于评估生物标志物检测早期事件或接近药物作用阈值的事件的能力时可能存在不确定性。基于能够对疾病状态或药物作用进行连续描述的研究终点,并结合生物功能变化测量的替代方法,可能会在生物标志物研究中使输入和输出数据之间实现更好的“阻抗匹配”,并改善对药物安全性问题的早期评估和预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验