Carvalho Luciani R, Brinkmeier Michelle L, Castinetti Frederic, Ellsworth Buffy S, Camper Sally A
Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Mol Endocrinol. 2010 Apr;24(4):754-65. doi: 10.1210/me.2008-0359. Epub 2010 Feb 24.
Pituitary hormone deficiency causes short stature in one in 4000 children born and can be caused by mutations in transcription factor genes, including HESX1, PROP1, and POU1F1. HESX1 interacts with a member of the groucho-related gene family, TLE1, through an engrailed homology domain and represses PROP1 activity. Mice with Prop1 deficiency exhibit failed differentiation of the POU1F1 lineage, resulting in lack of TSH, GH, and prolactin. In addition, these mutants exhibit profound pituitary dysmorphology and excess Hesx1 and Tle3 expression. The ability of HESX1 to interact with TLE3 has not been explored previously. We tested the ability of TLE3 to enhance HESX1-mediated repression of PROP1 in cell culture. Both TLE3 and TLE1 repress PROP1 in conjunction with HESX1 with similar efficiencies. TLE1 and TLE3 can each repress PROP1 in the absence of HESX1 via a protein-protein interaction. We tested the functional consequences of ectopic TLE3 and HESX1 expression in transgenic mice by driving constitutive expression in pituitary thyrotrophs and gonadotrophs. Terminal differentiation of these cells was suppressed by HESX1 alone and by TLE3 and HESX1 together but not by TLE3 alone. In summary, we present evidence that HESX1 is a strong repressor that can be augmented by the corepressors TLE1 and TLE3. Our in vitro studies suggest that TLE1 and TLE3 might also play roles independent of HESX1 by interacting with other transcription factors like PROP1.
垂体激素缺乏症在每4000名出生儿童中就有1例导致身材矮小,其病因可能是转录因子基因突变,包括HESX1、PROP1和POU1F1。HESX1通过一个engrailed同源结构域与groucho相关基因家族的成员TLE1相互作用,并抑制PROP1的活性。Prop1缺乏的小鼠表现出POU1F1谱系分化失败,导致促甲状腺激素、生长激素和催乳素缺乏。此外,这些突变体表现出严重的垂体形态异常以及Hesx1和Tle3表达过量。此前尚未探究过HESX1与TLE3相互作用的能力。我们在细胞培养中测试了TLE3增强HESX1介导的对PROP1抑制作用的能力。TLE3和TLE1与HESX1共同作用时,对PROP1的抑制效率相似。在没有HESX1的情况下,TLE1和TLE3均可通过蛋白质-蛋白质相互作用抑制PROP1。我们通过在垂体促甲状腺细胞和促性腺细胞中驱动组成型表达,测试了转基因小鼠中异位表达TLE3和HESX1的功能后果。这些细胞的终末分化仅被HESX1单独抑制,以及被TLE3和HESX1共同抑制,但不被TLE3单独抑制。总之,我们提供的证据表明HESX1是一种强效抑制因子,可被共抑制因子TLE1和TLE3增强。我们的体外研究表明,TLE1和TLE3可能还通过与PROP1等其他转录因子相互作用,发挥独立于HESX1的作用。