Suppr超能文献

利用包含小气候和城市几何参数的统计模型来估算植被城市区域的空气污染物浓度:以希腊雅典市为例的案例研究。

Estimating airborne pollutant concentrations in vegetated urban sites using statistical models with microclimate and urban geometry parameters as predictor variables: a case study in the city of Athens Greece.

机构信息

Division of Geological Sciences and Atmospheric Environment, Agricultural University of Athens, Athens, Greece.

出版信息

J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009 Dec;44(14):1496-502. doi: 10.1080/10934520903263256.

Abstract

The present study demonstrates the efficiency of applying statistical models to estimate airborne pollutant concentrations in urban vegetation by using as predictor variables readily available or easily accessible data. Results revealed that airborne cadmium concentrations in vegetation showed a predictable response to wind conditions and to various urban landscape features such as the distance between the vegetation and the adjacent street, the mean height of the adjacent buildings, the mean density of vegetation between vegetation and the adjacent street and the mean height of vegetation. An artificial neural network (ANN) model was found to have superiority in terms of accuracy with an R(2) value on the order of 0.9. The lowest R(2) value (on the order of 0.7) was associated with the linear model (SMLR model). The linear model with interactions (SMLRI model) and the tree regression (RTM) model gave similar results in terms of accuracy with R(2) values on the order of 0.8. The improvement of the results with the use of the non-linear models (RTM and ANN) and the inclusion of interaction terms in the SMLRI model implied the nonlinear relationships of pollutant concentrations to the selected predictors and showed the importance of the interactions between the various predictor variables. Despite the limitations of the models, some of them appear to be promising alternatives to multimedia-based simulation modeling approaches in urban areas with vegetation, where the application of typical deposition models is sometimes limited.

摘要

本研究通过使用易于获取或易于访问的数据作为预测变量,展示了统计模型在估算城市植被中空气污染物浓度方面的效率。结果表明,植被中空气中的镉浓度对风况以及各种城市景观特征(如植被与相邻街道之间的距离、相邻建筑物的平均高度、植被与相邻街道之间的植被平均密度以及植被的平均高度)表现出可预测的响应。人工神经网络 (ANN) 模型在准确性方面具有优势,其 R(2) 值约为 0.9。线性模型(SMLR 模型)的 R(2) 值最低(约为 0.7)。具有交互作用的线性模型(SMLRI 模型)和树回归(RTM)模型在准确性方面的结果相似,R(2) 值约为 0.8。使用非线性模型(RTM 和 ANN)和在 SMLRI 模型中包含交互项可以提高结果的准确性,这表明污染物浓度与所选预测因子之间存在非线性关系,并显示了各预测因子之间交互作用的重要性。尽管模型存在一些限制,但其中一些模型似乎是在有植被的城市地区应用典型沉积模型有时受到限制的情况下,替代基于多媒体的模拟建模方法的有前途的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验