Suppr超能文献

丁香假单胞菌转录组分析鉴定新基因、非编码 RNA 和反义活性。

Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity.

机构信息

USDA Agricultural Research Service, Plant-Microbe Interactions Research Unit, Cornell University, Plant Science Bldg., Room 334, Ithaca, NY 14853, USA.

出版信息

J Bacteriol. 2010 May;192(9):2359-72. doi: 10.1128/JB.01445-09. Epub 2010 Feb 26.

Abstract

To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.

摘要

为了全面了解细菌如何对环境做出反应,评估全基因组转录活性至关重要。新的高通量测序技术使得以高效、无偏倚的方式查询生物体的转录组成为可能。我们应用一种链特异性方法,使用 Illumina 的高通量测序技术对细菌转录本进行测序。所得到的序列被用于构建全基因组转录谱。开发了新颖的生物信息学分析方法,并与蛋白质组学数据结合使用,用于对定义区域的转录活性进行定性分类。不出所料,大多数转录活性与基因组注释的预测一致。重要的是,我们在与注释不一致的基因组区域和未注释区域中鉴定并确认了转录活性。进一步的分析揭示了几个非编码 RNA(ncRNA)上游潜在的 RpoN 依赖性启动子序列,表明这些 ncRNA 在 RpoN 依赖性表型中发挥作用。我们还能够验证许多转录起始位点,其中许多与预测的启动子基序一致。总的来说,我们的方法提供了一种高效的方法来调查细菌中的全基因组转录活性,并能够快速发现基因组中值得进一步研究的特定区域。

相似文献

1
Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity.
J Bacteriol. 2010 May;192(9):2359-72. doi: 10.1128/JB.01445-09. Epub 2010 Feb 26.
3
Pervasive transcription: illuminating the dark matter of bacterial transcriptomes.
Nat Rev Microbiol. 2014 Sep;12(9):647-53. doi: 10.1038/nrmicro3316. Epub 2014 Jul 28.
4
The transcriptional landscape of Chlamydia pneumoniae.
Genome Biol. 2011 Oct 11;12(10):R98. doi: 10.1186/gb-2011-12-10-r98.
6
Transcriptome complexity in a genome-reduced bacterium.
Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.
7
Genome-Wide Analysis of the Transcription Start Sites and Promoter Motifs of Phytoplasmas.
DNA Cell Biol. 2017 Dec;36(12):1081-1092. doi: 10.1089/dna.2016.3616. Epub 2017 Oct 17.
8
Noncoding but nonexpendable: transcriptional regulation by large noncoding RNA in eukaryotes.
Biochem Cell Biol. 2007 Aug;85(4):484-96. doi: 10.1139/O07-061.

引用本文的文献

1
Unravelling the transcriptome response of Enterobacter sp. S-33 under varying temperature.
Arch Microbiol. 2024 Jan 31;206(2):81. doi: 10.1007/s00203-023-03792-6.
3
Do small RNAs unlock the below ground microbiome-plant interaction mystery?
Front Mol Biosci. 2022 Nov 1;9:1017392. doi: 10.3389/fmolb.2022.1017392. eCollection 2022.
4
Spotlight on alternative frame coding: Two long overlapping genes in are translated and under purifying selection.
iScience. 2022 Feb 1;25(2):103844. doi: 10.1016/j.isci.2022.103844. eCollection 2022 Feb 18.
5
Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in .
Front Microbiol. 2022 Jan 12;12:815911. doi: 10.3389/fmicb.2021.815911. eCollection 2021.
6
The Regulatory Functions of σ Factor in Phytopathogenic Bacteria.
Int J Mol Sci. 2021 Nov 24;22(23):12692. doi: 10.3390/ijms222312692.
7
Identification of Indole-3-Acetic Acid-Regulated Genes in pv. tomato Strain DC3000.
J Bacteriol. 2022 Jan 18;204(1):e0038021. doi: 10.1128/JB.00380-21. Epub 2021 Oct 18.
8
Specific and Global RNA Regulators in .
Int J Mol Sci. 2021 Aug 11;22(16):8632. doi: 10.3390/ijms22168632.
9
The CbrB Regulon: Promoter dissection reveals novel insights into the CbrAB expression network in Pseudomonas putida.
PLoS One. 2018 Dec 17;13(12):e0209191. doi: 10.1371/journal.pone.0209191. eCollection 2018.

本文引用的文献

2
Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21878-82. doi: 10.1073/pnas.0909051106. Epub 2009 Dec 8.
3
Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity.
Nat Rev Genet. 2010 Jan;11(1):9-16. doi: 10.1038/nrg2695. Epub 2009 Nov 24.
4
Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome.
Nucleic Acids Res. 2010 Jan;38(3):868-77. doi: 10.1093/nar/gkp1032. Epub 2009 Nov 18.
5
A single-base resolution map of an archaeal transcriptome.
Genome Res. 2010 Jan;20(1):133-41. doi: 10.1101/gr.100396.109. Epub 2009 Nov 2.
6
A simple method for directional transcriptome sequencing using Illumina technology.
Nucleic Acids Res. 2009 Dec;37(22):e148. doi: 10.1093/nar/gkp811.
7
Transcriptome analysis by strand-specific sequencing of complementary DNA.
Nucleic Acids Res. 2009 Oct;37(18):e123. doi: 10.1093/nar/gkp596. Epub 2009 Jul 20.
9
Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx.
BMC Genomics. 2009 May 12;10:219. doi: 10.1186/1471-2164-10-219.
10
Structure and complexity of a bacterial transcriptome.
J Bacteriol. 2009 May;191(10):3203-11. doi: 10.1128/JB.00122-09. Epub 2009 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验