Suppr超能文献

从组合肽选择到药物原型(一):靶向血管内皮生长因子受体途径。

From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway.

机构信息

David H Koch Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5112-7. doi: 10.1073/pnas.0915141107. Epub 2010 Feb 26.

Abstract

Inhibition of blood vessel formation is a viable therapeutic approach in angiogenesis-dependent diseases. We previously used a combinatorial screening on vascular endothelial growth factor (VEGF)-activated endothelial cells to select the sequence CPQPRPLC and showed that the motif Arg-Pro-Leu targets VEGF receptor-1 and neuropilin-1. Here, we evaluated and validated (D)(LPR), a derivative molecule with strong antiangiogenesis attributes. This prototype drug markedly inhibits neovascularization in three mouse models: Matrigel-based assay, functional human/murine blood vessel formation, and retinopathy of prematurity. In addition to its systemic activity, (D)(LPR) also inhibits retinal angiogenesis when administered in an eye-drop formulation. Finally, in preliminary studies, we have showed targeted drug activity in an experimental tumor-bearing mouse model. These results show that drugs targeting extracellular domains of VEGF receptors are active, affect signal transduction, and have potential for clinical application. On a larger context, this study illustrates the power of ligand-directed selection plus retro-inversion for rapid drug discovery and development.

摘要

抑制血管生成是血管生成依赖性疾病的一种可行的治疗方法。我们之前使用血管内皮生长因子(VEGF)激活的内皮细胞的组合筛选来选择序列 CPQPRPLC,并表明该基序 Arg-Pro-Leu 靶向 VEGF 受体-1 和神经纤毛蛋白-1。在这里,我们评估和验证了具有强大抗血管生成特性的衍生分子(D)(LPR)。这种原型药物在三种小鼠模型中显著抑制新血管生成:基于 Matrigel 的测定、功能性人/鼠血管生成和早产儿视网膜病变。除了其全身活性外,(D)(LPR)在滴眼剂配方中给药时还抑制视网膜血管生成。最后,在初步研究中,我们在实验性荷瘤小鼠模型中显示了靶向药物活性。这些结果表明,靶向 VEGF 受体细胞外结构域的药物具有活性,可影响信号转导,具有临床应用的潜力。从更大的角度来看,这项研究说明了配体定向选择加反向反转在快速药物发现和开发中的强大作用。

相似文献

1
From combinatorial peptide selection to drug prototype (I): targeting the vascular endothelial growth factor receptor pathway.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5112-7. doi: 10.1073/pnas.0915141107. Epub 2010 Feb 26.
2
Discovery of pan-VEGF inhibitory peptides directed to the extracellular ligand-binding domains of the VEGF receptors.
Sci Adv. 2016 Oct 28;2(10):e1600611. doi: 10.1126/sciadv.1600611. eCollection 2016 Oct.
4
From combinatorial peptide selection to drug prototype (II): targeting the epidermal growth factor receptor pathway.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):5118-23. doi: 10.1073/pnas.0915146107. Epub 2010 Feb 26.
6
A KDR-binding peptide (ST100,059) can block angiogenesis, melanoma tumor growth and metastasis in vitro and in vivo.
Int J Oncol. 2011 Aug;39(2):401-8. doi: 10.3892/ijo.2011.1040. Epub 2011 May 11.
7
Novel Small Molecule JP-153 Targets the Src-FAK-Paxillin Signaling Complex to Inhibit VEGF-Induced Retinal Angiogenesis.
Mol Pharmacol. 2017 Jan;91(1):1-13. doi: 10.1124/mol.116.105031. Epub 2016 Nov 9.
10
Immunoglobulin Fc-Fused Peptide without C-Terminal Arg or Lys Residue Augments Neuropilin-1-Dependent Tumor Vascular Permeability.
Mol Pharm. 2018 Feb 5;15(2):394-402. doi: 10.1021/acs.molpharmaceut.7b00761. Epub 2017 Dec 21.

引用本文的文献

1
VEGF-Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications.
Cells. 2024 Nov 4;13(21):1815. doi: 10.3390/cells13211815.
3
Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades.
Pharmaceutics. 2023 Oct 12;15(10):2451. doi: 10.3390/pharmaceutics15102451.
4
Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions.
Vaccines (Basel). 2023 Apr 29;11(5):919. doi: 10.3390/vaccines11050919.
5
Peptide therapeutics in the management of metastatic cancers.
RSC Adv. 2022 Aug 2;12(33):21353-21373. doi: 10.1039/d2ra02062a. eCollection 2022 Jul 21.
6
Biological aspects in controlling angiogenesis: current progress.
Cell Mol Life Sci. 2022 Jun 7;79(7):349. doi: 10.1007/s00018-022-04348-5.
7
Recent Applications of Retro-Inverso Peptides.
Int J Mol Sci. 2021 Aug 12;22(16):8677. doi: 10.3390/ijms22168677.
8
Structural Studies on an Anti-Angiogenic Peptide Using Molecular Modeling.
Iran J Biotechnol. 2020 Oct 1;18(4):e2553. doi: 10.30498/IJB.2020.2553. eCollection 2020 Oct.

本文引用的文献

1
C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16157-62. doi: 10.1073/pnas.0908201106. Epub 2009 Sep 2.
2
Retinopathy of prematurity: current concepts in molecular pathogenesis.
Semin Ophthalmol. 2009 Mar-Apr;24(2):77-81. doi: 10.1080/08820530902800314.
3
VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6152-7. doi: 10.1073/pnas.0813061106. Epub 2009 Apr 6.
4
FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy?
Nat Rev Cancer. 2008 Dec;8(12):942-56. doi: 10.1038/nrc2524.
5
Development of targeted angiogenic medicine.
J Thromb Haemost. 2009 Jan;7(1):21-33. doi: 10.1111/j.1538-7836.2008.03203.x. Epub 2008 Oct 25.
6
Pathways mediating resistance to vascular endothelial growth factor-targeted therapy.
Clin Cancer Res. 2008 Oct 15;14(20):6371-5. doi: 10.1158/1078-0432.CCR-07-5287.
7
VEGF inhibition: insights from preclinical and clinical studies.
Cell Tissue Res. 2009 Jan;335(1):261-9. doi: 10.1007/s00441-008-0675-8. Epub 2008 Sep 3.
8
VEGF-targeted therapy: mechanisms of anti-tumour activity.
Nat Rev Cancer. 2008 Aug;8(8):579-91. doi: 10.1038/nrc2403. Epub 2008 Jul 3.
10
Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR.
FASEB J. 2008 Aug;22(8):3078-86. doi: 10.1096/fj.08-107219. Epub 2008 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验