School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
J Am Chem Soc. 2010 Mar 24;132(11):3879-92. doi: 10.1021/ja910500a.
Five-coordinate oxorhenium(V) anions with redox-active catecholate and amidophenolate ligands are shown to effect clean bimetallic cleavage of O(2) to give dioxorhenium(VII) products. A structural homologue with redox-inert oxalate ligands does not react with O(2). Redox-active ligands lower the kinetic barrier to bimetallic O(2) homolysis at five-coordinate oxorhenium(V) by facilitating formation and stabilization of intermediate O(2) adducts. O(2) activation occurs by two sequential Re-O bond forming reactions, which generate mononuclear eta(1)-superoxo species, and then binuclear trans-mu-1,2-peroxo-bridged complexes. Formation of both Re-O bonds requires trapping of a triplet radical dioxygen species by a cis-Re(V)(O)(cat)(2) anion. In each reaction the dioxygen fragment is reduced by 1e(-), so generation of each new Re-O bond requires that an oxometal fragment is oxidized by 1e(-). Complexes containing a redox-active ligand access a lower energy reaction pathway for the 1e(-) Re-O bond forming reaction because the metal fragment can be oxidized without a change in formal rhenium oxidation state. It is also likely that redox-active ligands facilitate O(2) homolysis by lowering the barrier to the formally spin-forbidden reactions of triplet dioxygen with the closed shell oxorhenium(V) anions. By orthogonalizing 1e(-) and 2e(-) redox at oxorhenium(V), the redox-active ligand allows high-valent rhenium to utilize a mechanism for O(2) activation that is atypical of oxorhenium(V) but more typical for oxygenase enzymes and models based on 3d transition metal ions: O(2) cleavage occurs by a net 2e(-) process through a series of 1e(-) steps. The implications for design of new multielectron catalysts for oxygenase-type O(2) activation, as well as the microscopic reverse reaction, O-O bond formation from coupling of two M=O fragments for catalytic water oxidation, are discussed.
具有氧化还原活性儿茶酚和酰胺苯并酚配体的五配位氧铼(V)阴离子被证明可以有效地将双金属 O(2)均裂,生成二氧铼(VII)产物。具有氧化还原惰性草酸盐配体的结构同系物与 O(2)不反应。氧化还原活性配体通过形成和稳定中间 O(2)加合物,降低了五配位氧铼(V)双金属 O(2)均裂的动力学势垒。O(2)的活化是通过两个连续的 Re-O 键形成反应进行的,这两个反应生成单核 eta(1)-超氧物种,然后生成双核反式 mu-1,2-过氧桥联配合物。两个 Re-O 键的形成都需要通过 cis-Re(V)(O)(cat)(2)阴离子捕获三重态自由基氧物种。在每个反应中,氧气片段被 1e(-)还原,因此每个新的 Re-O 键的形成都需要一个金属氧片段被 1e(-)氧化。含有氧化还原活性配体的配合物可以通过降低 1e(-)Re-O 键形成反应的能垒来进入更低能量的反应途径,因为金属片段可以在不改变铼氧化态的情况下被氧化。氧化还原活性配体也可能通过降低三重态氧气与封闭壳层氧铼(V)阴离子的正式自旋禁阻反应的能垒来促进 O(2)均裂。通过在氧铼(V)处正交化 1e(-)和 2e(-)氧化还原,氧化还原活性配体允许高价铼利用一种典型的氧铼(V)但更典型的氧酶和基于 3d 过渡金属离子的模型的 O(2)活化机制:O(2)的断裂通过一系列 1e(-)步骤通过净 2e(-)过程发生。这对设计用于氧酶型 O(2)活化的新型多电子催化剂以及微观的逆反应,即两个 M=O 片段偶联形成 O-O 键以催化水氧化,具有重要意义。