Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352, USA.
J Chem Phys. 2010 Feb 28;132(8):084501. doi: 10.1063/1.3308499.
A combined theoretical and solid-state (17)O nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO(2)(2+) in (NH(4))(4)UO(2)(CO(3))(3) and rutherfordine (UO(2)CO(3)) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of (17)O chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state (17)O NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the (17)O echo signal of U (17)O(2)(2+).
本文采用理论和固态(17)O 核磁共振(NMR)相结合的方法,研究了(NH(4))(4)UO(2)(CO(3))(3)和 rutherfordine(UO(2)CO(3))中铀酰离子 UO(2)(2+)的电子结构,前者代表了一个铀氧基周围有氢键环境的体系,后者则代表了一个没有氢的铀酰环境。相对论密度泛函计算揭示了 U-O 共价键的独特性质,包括发现了(17)O 化学位移各向异性,这是迄今为止报道的最大的氧化学位移各向异性之一(>1200 ppm)。计算得到的氧电场梯度张量的结果在幅度上始终大于实验固态(17)O NMR 测量在 7.05 T 磁场下的结果。为分析 U(17)O(2)(2+)的(17)O 回波信号,开发并应用了一种针对自旋为 5/2 核的 Solomon 双自旋回波幅度理论的修正版本。