Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
Annu Rev Plant Biol. 2010;61:21-47. doi: 10.1146/annurev-arplant-042809-112259.
Signaling photoreceptors use the information contained in the absorption of a photon to modulate biological activity in plants and a wide range of organisms. The fundamental-and as yet imperfectly answered-question is, how is this achieved at the molecular level? We adopt the perspective of biophysicists interested in light-dependent signal transduction in nature and the three-dimensional structures that underpin signaling. Six classes of photoreceptors are known: light-oxygen-voltage (LOV) sensors, xanthopsins, phytochromes, blue-light sensors using flavin adenine dinucleotide (BLUF), cryptochromes, and rhodopsins. All are water-soluble proteins except rhodopsins, which are integral membrane proteins; all are based on a modular architecture except cryptochromes and rhodopsins; and each displays a distinct, light-dependent chemical process based on the photochemistry of their nonprotein chromophore, such as isomerization about a double bond (xanthopsins, phytochromes, and rhodopsins), formation or rupture of a covalent bond (LOV sensors), or electron transfer (BLUF sensors and cryptochromes).
信号光受体利用光子吸收所包含的信息来调节植物和广泛生物的生物活性。基本的——而且尚未完全回答的——问题是,这是如何在分子水平上实现的?我们采用对自然中依赖光的信号转导以及支撑信号的三维结构感兴趣的生物物理学家的视角。已知有六类光受体:光-氧-电压(LOV)传感器、黄质体、光敏色素、使用黄素腺嘌呤二核苷酸(BLUF)的蓝光传感器、隐花色素和视紫红质。除了视紫红质,所有这些都是水溶性蛋白质,视紫红质是整合膜蛋白;除了隐花色素和视紫红质之外,所有这些都是基于模块架构的;并且每个都显示出独特的、依赖于光的化学过程,这是基于其非蛋白发色团的光化学,例如双键的异构化(黄质体、光敏色素和视紫红质)、共价键的形成或断裂(LOV 传感器)或电子转移(BLUF 传感器和隐花色素)。