Suppr超能文献

蛋白质靶向到叶绿体内膜的停止转移和后导入途径的决定因素。

Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane.

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Biol Chem. 2010 Apr 23;285(17):12948-60. doi: 10.1074/jbc.M110.109744. Epub 2010 Mar 1.

Abstract

The inner envelope membrane (IEM) of the chloroplast plays key roles in controlling metabolite transport between the organelle and cytoplasm and is a major site of lipid and membrane synthesis within the organelle. IEM biogenesis requires the import and integration of nucleus-encoded membrane proteins. Previous reports have led to the conclusion that membrane proteins are inserted into the IEM during protein import from the cytoplasm via a stop-transfer mechanism or are completely imported into the stroma and then inserted into the IEM in a post-import mechanism. In this study, we examined the determinants for each pathway by comparing the targeting of APG1 (albino or pale green mutant 1), an example of a stop-transfer substrate, and atTic40, an example of a post-import substrate. We show that the APG1 transmembrane domain is sufficient to direct stop-transfer insertion. The APG1 transmembrane domain also functions as a topology determinant. We also show that the ability of the post-import signals within atTic40 to target proteins to the IEM is dependent upon their context within the full protein sequence. In the incorrect context, the atTic40 signals can behave as stop-transfer signals or fail to target fusion proteins to the IEM. These data suggest that the post-import pathway signals are complex and have evolved to avoid stop-transfer insertion.

摘要

叶绿体的内囊膜(IEM)在控制细胞器和细胞质之间的代谢物运输方面起着关键作用,是细胞器内脂质和膜合成的主要场所。IEM 的生物发生需要核编码膜蛋白的导入和整合。先前的报告得出的结论是,膜蛋白通过停止转移机制从细胞质中导入时插入 IEM 中,或者完全导入基质中,然后在后导入机制中插入 IEM。在这项研究中,我们通过比较 APG1(白化或淡绿色突变体 1)和 atTic40 的靶向来检查每种途径的决定因素,APG1 是停止转移底物的一个例子,atTic40 是后导入底物的一个例子。我们表明,APG1 的跨膜结构域足以指导停止转移插入。APG1 的跨膜结构域也作为拓扑决定因素起作用。我们还表明,atTic40 内的后导入信号将蛋白质靶向 IEM 的能力取决于它们在整个蛋白质序列中的上下文。在不正确的上下文中,atTic40 信号可以表现为停止转移信号或无法将融合蛋白靶向 IEM。这些数据表明,后导入途径信号是复杂的,并且已经进化以避免停止转移插入。

相似文献

1
Determinants for stop-transfer and post-import pathways for protein targeting to the chloroplast inner envelope membrane.
J Biol Chem. 2010 Apr 23;285(17):12948-60. doi: 10.1074/jbc.M110.109744. Epub 2010 Mar 1.
2
Reconstitution of protein targeting to the inner envelope membrane of chloroplasts.
J Cell Biol. 2006 Oct 23;175(2):249-59. doi: 10.1083/jcb.200605162.
5
Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon.
EMBO J. 2003 Jun 16;22(12):2970-80. doi: 10.1093/emboj/cdg281.
7
AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis.
Nat Cell Biol. 2008 Feb;10(2):220-7. doi: 10.1038/ncb1683. Epub 2008 Jan 13.
8
Tic40 is important for reinsertion of proteins from the chloroplast stroma into the inner membrane.
Plant J. 2008 Dec;56(5):793-801. doi: 10.1111/j.1365-313X.2008.03638.x. Epub 2008 Jul 23.
9
Chaperone-assisted Post-translational Transport of Plastidic Type I Signal Peptidase 1.
J Biol Chem. 2015 Nov 27;290(48):28778-91. doi: 10.1074/jbc.M115.684829. Epub 2015 Oct 7.
10
Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope.
Plant Physiol. 2016 Jan;170(1):147-62. doi: 10.1104/pp.15.01538. Epub 2015 Nov 19.

引用本文的文献

1
Targeting signals required for protein sorting to sub-chloroplast compartments.
Plant Cell Rep. 2024 Dec 26;44(1):14. doi: 10.1007/s00299-024-03409-2.
2
The N-region sequence context impacts the chloroplast import efficiency of multi-TMD protein.
Plant Mol Biol. 2024 Aug 2;114(4):88. doi: 10.1007/s11103-024-01485-2.
3
MFP1 defines the subchloroplast location of starch granule initiation.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2309666121. doi: 10.1073/pnas.2309666121. Epub 2024 Jan 8.
4
Chloroplast protein translocation pathways and ubiquitin-dependent regulation at a glance.
J Cell Sci. 2023 Sep 15;136(18). doi: 10.1242/jcs.241125. Epub 2023 Sep 21.
5
Understanding protein import in diverse non-green plastids.
Front Genet. 2023 Mar 16;14:969931. doi: 10.3389/fgene.2023.969931. eCollection 2023.
6
Liquid-Liquid Phase Separation Phenomenon on Protein Sorting Within Chloroplasts.
Front Physiol. 2021 Dec 24;12:801212. doi: 10.3389/fphys.2021.801212. eCollection 2021.
7
Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns.
Front Plant Sci. 2021 Aug 31;12:727118. doi: 10.3389/fpls.2021.727118. eCollection 2021.
8
Go your own way: membrane-targeting sequences.
Plant Physiol. 2021 Apr 2;185(3):608-618. doi: 10.1093/plphys/kiaa058.
9
Protein import into chloroplasts and its regulation by the ubiquitin-proteasome system.
Biochem Soc Trans. 2020 Feb 28;48(1):71-82. doi: 10.1042/BST20190274.

本文引用的文献

1
Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants.
Plant Physiol Biochem. 2009 Jun;47(6):518-25. doi: 10.1016/j.plaphy.2008.12.012. Epub 2008 Dec 27.
2
Targeting of nucleus-encoded proteins to chloroplasts in plants.
New Phytol. 2008 Jul;179(2):257-285. doi: 10.1111/j.1469-8137.2008.02452.x.
4
Import of preproteins into the chloroplast inner envelope membrane.
Plant Mol Biol. 2008 Nov;68(4-5):505-19. doi: 10.1007/s11103-008-9387-4. Epub 2008 Aug 14.
5
Tic40 is important for reinsertion of proteins from the chloroplast stroma into the inner membrane.
Plant J. 2008 Dec;56(5):793-801. doi: 10.1111/j.1365-313X.2008.03638.x. Epub 2008 Jul 23.
6
Protein trafficking to plastids: one theme, many variations.
Biochem J. 2008 Jul 1;413(1):15-28. doi: 10.1042/BJ20080490.
8
Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol.
Photosynth Res. 2007 May;92(2):225-44. doi: 10.1007/s11120-007-9195-8. Epub 2007 Jun 9.
9
Reconstitution of protein targeting to the inner envelope membrane of chloroplasts.
J Cell Biol. 2006 Oct 23;175(2):249-59. doi: 10.1083/jcb.200605162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验